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Abstract

In this paper, the problem under consideration is multiobjective non-linear fractional
programming problem involving semilocally convex and related functions. We have discussed the
interrelation between the solution sets involving properly efficient solutions of multiobjective
fractional programming and corresponding scalar fractional programming problem. Necessary and
sufficient optimality conditions are obtained for efficient and properly efficient solutions. Some
duality results are established for multiobjective Schaible type dual.
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1. Introduction

Kaul and Kaur [1] obtained necessary optimality conditions for a non-linear programming
problem by taking the objective and constraint functions to be semilocally convex and their
right differentials at a point to be lower semi-continuous. Suneja and Gupta [2] established the
necessary optimality conditions without assuming the semilocal convexity of the objective
and constraint functions but their right differentials at the optimal point to be convex.

Suneja and Gupta [3] established necessary optimality conditions for an efficient solution
of a multiobjective non-linear programming problem by taking the right differentials of the
objective functions and constraint functions at the efficient point to be convex.

Consider the following Multi-objective fractional programming problem:

(MFP) Minimize| 110 /20) i) |
gi(x) g,(x) g (x)
Subject to h(x)<0,j=12,.,m,xeS,
where § < R"is a locally star shaped set and f,,g,:S—>R,i =1,2,...,k and
h,:S—>R, j=12,..,m, are semidifferentiable functions,
fi(x)=20, g(x)>0,i =L,2,...,k forall xeS.
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Let X ° :{x eS|h, (x)<0,j =1,2,...,m} and 1 USRS
gi(x)

Using the parametric approach of Dinkelbach [4] and Jagannathan [5] for the scalar
fractional programming and following Bector and Chandra [1] and Kaul and Lyall [6], we

consider the following parametric multiobjective optimization problem (MFP,) forz € R*.

(MFP,) Minimize[(f] —1,8)(x),(f, —1,8,)(x ), (f, =2, 8, )X )] )
Subject to h(x)<0,j=12,.,m, xeS§.

We now have the following lemma connecting the properly efficient solutions of
(MFP) and (MFP,).

Lemma 1. Let x" be a properly efficient solution of (MFP), then there exists ¢ € R* such that

x'is properly efficient solution of (MFP..) .Conversely if x'is a properly efficient solution

of (MFP. ) wheres,” = f"(x*) ,i =1,2,....,k then x is a is properly efficient solution of (MFP).

gi(x)

2. Optimality conditions

Definition 1. The problem (MFP.)is said to satisfy generalized Slater type constraint
qualification at x €S if the ﬁlnctionsﬁ.—t,.*gl.,i =12,...,k and h,,jelare semilocally

pseudoconvex at x" and for each r =1,2,...,k there exists x’ € S such that

(f;_tl*gl)('x:‘)<0’l :172)"')k s iil"
and £, (x)) <0,where/ :I(x*):{i‘hl_(x*)zo}
and J=J(x*)={j‘hj(x*)<0}.

Now we obtain necessary optimality conditions corresponding to(MFP.).

Theorem 1. Let x* be an efficient solution of (MFP)and S be convex. Let 4 ; be continuous

atx for jelandd(f,—t;g) (x",x—x"),i =1,2,...k ,(dh;,)"(x",x—x")be convex functions

of x. If (MFP.) satisfies generalized Slater type constraint qualification at x for ¢, = fiix*; ,
8i\X
i =1,2,...,k then there exists&; >0,/ =1,2,....,k and n, >0, jeI such that
k
Y& x-x) 1] (dg) (" x=x) ]+ Y mi[(dh) (x",x—x")]>0, (1

i=1 jel(x")
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forall xe S .

Proof. We claim that the system
d(f,-tg) (x,x-x)<0,i =1,2,...k , )
d(hj)+(x*,x—x*)<0, jel(x) 3)

has no solutionx € S .

If possible let x"be the solution of the system.
By the relation (2) we have

(f,i—t;g)x +Ax—x ) —(fi—t;g)(x) <0

lim,_ 7 ; (4)

which implies that there exists 6, > 0 such that

(f -t g)x +A(x=x))-(f,-t.g)x)<0forde (0,51), &)
by (5), (f,—tg)x +Ax—-xN<(f—-tg)x),i=12,..k.

Similarly by the relation (3), there exists, >0, such that

hj(x* +A(x—x*))—hj(x*) <0, for A e (0,52) ,

for jeI(x"),h : (x")<0and A ;is continuous at x therefore there exists 5]’. >0, such that
hj(x* +A(x—x))<0, for A e (0,07).
Let 6 = min{51,52,5/'.}, then for 1 € (0,5*) ,we have
(f~ g+ Ax=x N < (f ~£g)x )i =12k
hj(x* +A(x—x))<0,jel(x),
and (x +A(x—x))eX .

This implies that x" is not an efficient solution of (MFP.) .Hence, x  is not an efficient
solution of (MFP), contrary to the given hypothesis. Thus, the system (2), (3) has no solution
x in S. Also,d(f,—t;g) (x",x—x"), i=12,....k,(dh)"(x ,x—x"),jelare convex
functions of x.

By Mangasarian [7] , there exists él.* >0,i =1,2,...k ,17; >0, jel, not all zero such that
(1) holds.

We shall now show that& >0, for each i =1,2,...,k . If possible leté =0, for some ,

1 <r <k .By generalized Slater type constraint qualification, there existsx_ € S, such that
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(f—tg)x)<(f—-£g)x),i=1L2k, i%r,
h(x)<0,

and (f, —tl.*gl.) ,i=1,2,....k and h,,jelare semilocally pseudoconvex at x".

Therefore it follows that

d(f,—tg) (x,x. -x)<0,i =1,2,...k ,
and (dh_/.)+(x*,x;—x*)<0,jel(x*).

Since at least one of the coefficients é.* ,i=12,..,k ,i#rand 17; , j € I 1s non zero, therefore

we obtain

Y& (X —x) = (dg) (¢, x=x) [+ X m[(dh) (xx —x)]<0,
i=1 Jjel(x)

which contradicts (1) as & =0.
Thusfl.* >0,foralli =1,2,....k .

Following Geoffrion [8] we consider the scalar problem corresponding to (MFP.)in

order to prove sufficient optimality conditions.

(MFP. )¢ Minimize Zk: E(f,(x)— ti*gi (%)),

Subject to h(x)<0, j=L2,...m.

We have the following results on the lines of Geoffrion in the light of Lemmal.
Lemma 2. If x"is an optimal solution of (MFPI*)5 for some & e R*, with strictly positive

BVACS)

components where ti* = =) ;then x"is a properly efficient solution of (MFP) .
gi\x
Theorem 2. Suppose there exists a feasible x” for (MFP)and scalars & >0, i =1,2,....k ,
17; >0, jelsuch that for all xe X°,where ti* = ﬁix*i ,i =1,2,...,k . Let the following
' gi\x

conditions be satisfied:
(1) fi,—g»i =L2,..,k and h;, j € I are semilocally convex at x,

k
(ii) D & (f, —t, g,) is semilocally pseudoconvex.
i=1

Then x" is a properly efficient solution of (MFP) .

Proof. Let x € X°
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Then » n:h,(x)< D nih,(x) : (6)

jel(x") jel(x")

(1) Since each #,, j € ['is semi locally convex at x", therefore it follows that ZU_jh_/(x*) is
Jjelx")
semilocally convex. From (6) we obtain

> ni(dh) (x",x—x")<0. (7)

jel(x")

Using (1) and (7), we get

Zk:fi*[(dﬁY(x*,x—x*)—ti*(dgi)+(x*,x—x*)] >0, forall xe X°. (8)

i=1

k
Now , f.,—g,,i =1,2,...,k are semilocally convex at x", therefore 25;"(]3 —t, g,)is also

i=1

semilocally convex at x", and (8) gives

L * * k * * * * 0
D& (0=, (x) 2D & (f,(x)—t, g (x7) forall xe X°, )
i=1 i=l1

which implies that x"is an optimal solution of (MFPI*)‘f* , where & has strictly positive

components. By lemma 2, it follows that x" is properly efficient for (MFP) .
(i1) Using the semilocal convexity of Zn;h_/ at x" in (6) we get (7) which when combined

Jjelx")
k
with (1) gives (8). Now 25; (f —ti* g,;)1s semilocally pseudoconvex, therefore, we get (9),
i=1
which implies that x" is properly efficient for (MFP).
In relation to(MFP), we now associate the following multiple objective Schaible type dual

program:

(MFD) Maximize @(t) = t(¢,,t,,..£, )

Subject to Zk:fi[(dﬁY(u,x—u)—ti(dgi)+(u,x—u)+ in_/[(dhj)*(u,x—u)]ZO, (10)
P =

forall xe X°, "

where Zklfi(fi(u)—tigi(u))zo, (11)

P
2,'7_/}’_/(”)2 0, (12)
andu e $.6 > 0,0, 0,1 1,2,k | u, 20, j =1,2,..m. (13)
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We now prove some duality results.

3. Weak duality

Theorem 3. Let x be feasible for (MFP)and (u,é‘,n,t)be feasible for (MFD). If the
following holds:

() fi,—g,i=1L2,..,k and h,, j e are semilocally convex at u,

k m
(i1) z; (f; —t.g;)1s semilocally pseudoconvex and z n,h; is semilocally convex at u,

i=1 j=1

Then f(x)isnot<t

Proof. If possible let f(x)<¢.

This gives MSz‘i,i =12,...k ,i#r
gi(x)

and PAC] <t, , for some r.
g,(x)
Multiplying these inequalities by &, >0,i =1,2,...,k and adding we get

Zéi(ﬁ(x)—tigi(x))< 0. (14)

Now x is feasible for (MFP) and (u,é‘,n,t)is feasible for (MFD)therefore

th_/ (x) Sanh_/(”) :
= =

Since h;,j =1,2,..,m are semilocally convex and consequently Zq/hj is semilocally
j=l
convex at u, therefore

277_/ (dh,)" (u,x—u)<0.
=

Using (10), we obtain
Y L) (s x—u)—1,(dg, )" (e, x~2)] 20

k
Now, f,,—g,,i =1,2,...,k are semilocally convex thereforeZﬁi (f; —t,g,)is semilocally
i=1

convex so we get

Zéi (f,(x)—1,8,(x)) = Zéi(ﬁ(u)—tigi(u)) >0.
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This contradicts (14).
Hence f(x)isnot <t.

4. Strong Duality

Theorem 4. Let x be feasible for(MFP)and (u*,é‘*,n*,t*)be feasible for (MFD)such that

%:q*,i:lﬂ,...,k. Let f,—g,.,i=L2,.,k be strictly semilocally convex and
g\ X

h,,j =12,..,m be semilocally convex at u",then x" =u".

Proof. Let x" #u , now x is feasible for (MFP)and (u*,é‘*,n*,t*) is feasible for (MFD),
therefore

> nih ()< ).
= j=1

Since #;, j =1,2,...,m are semilocally convex and consequently anhj is semilocally convex
j=l

at u" therefore
Zn;(dhjf(u*,x* —u")<0.
j=1

Using the above inequality in the relation (10) for dual feasibility of (u*,é‘*,n*,t*)and for

x €X’, we get

> ) 0 =) =4 )] 20,

B_y the strict semilocal convexity of f,and —g,,i =1,2,...,k at u",we obtain
> £ (=) > X =g,

gi;; =t gives that izil:é*(ﬁ(x*) —1;g,(x))=0,

k
therefore we get 25; (f—tg)u)<0,
i=1

which contradicts the fact that (u*, é‘*,n*,t*)is dual feasible.

Hencex =u.

Theorem 5. Let (u*,é*,n*,t*) be feasible for (MFD), f,,—g,, i=12,...k and h,,
j=12,..,m are semilocally convex at u . Suppose there exists a feasible x" for (MFP) such

*

that M:g =12,k . (15)

*

g (x)
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Thenx is properly efficient solution for (MFP). Also, if for each feasible (u,é‘,n,t)of
(MFD), f,,—g:,i =L2,..,k and h;,j=12,.,m are semilocally convex at u then

(u*,é*,n*,t*)is properly efficient solution for (MFD).

Proof. Suppose that x"is not an efficient solution of (MFP), then there exists a feasible x
for (MFP) and an index r such that

fix) _ £

g(x) g (x")’
[, _ S,
g.(x) g (x)

i=12,...k,i#r

and

Using (15), we getfg—xié ¢, which contradicts the weak duality. Therefore x must be an
g(x

efficient solution of (MFP).

If possible let x" be not properly efficient solution for (MFP), then by lemma 2.2.1, it follows

that x" is not a properly efficient solution of (MFP,.).

Therefore for every M >0, there exists a feasible x for (MFP.)and hence (MFP)and an

index i such that
(/i) -t g(x) < (f;,(x)-1;g,(x"))

and D)= 18 N0 18,
(f_/(x )_t_/g_/(x ))_(f_/(x)_t_/g_/(x))

For all j satisfying (f;(x)- t;gj (x)>(f; (x") - t;gj (x)).

That is ¢, g,(x)— f,(x) > M(f;(x)- t;gj (x)) for all j satisfying

f,(0)-tg,(x)>0.

Thus ¢ g,(x) — f,(x) can be made large and hence for & >0, we get the inequality

2.5 (6:8,(0) = £,())>0. (16)

Now proceeding on similar lines in Theorem 3, we get a contradiction to (16). Therefore
x must be properly efficient solution for (MFP). Also we can prove that (u*,g*,n*,t*)is
properly efficient solution for (MFD).

The above result can also be proved under the assumption that for each feasible (u,&,7,1),

k m
z &.(f;(x)—t,g,(x)) is semilocally pseudoconvex and anh_ ; 1s semilocally quasiconvex.

i=1 j=1


http://ijorlu.liau.ac.ir/article-1-177-en.html

[ Downloaded from ijorlu.liau.ac.ir on 2025-11-05 ]

Optimality and Duality for an Efficient Solution ... 29

5 Conclusion

In

this paper we have obtained some results for a properly efficient solution of a

multiobjective non-linear fractional programming problem involving semilocally convex and
related functions by assuming generalized Slater type constraint qualification.
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