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Abstract Global optimization methods play an important role to solve many real-world problems. 
Flower pollination algorithm (FP) is a new nature-inspired algorithm, based on the characteristics of 

flowering plants. In this paper, a new hybrid optimization method called hybrid flower pollination 

algorithm (FPPSO) is proposed. The method combines the standard flower pollination algorithm (FP) 

with the particle swarm optimization (PSO) algorithm to improve the searching accuracy. The FPPSO 
algorithm is used to solve constrained optimization problems. Experimental results showed that the 

accuracy of finding the best solution and convergence speed performance of the proposed algorithm is 

significantly better compared to those achieved by the existing algorithms. 
 

Keywords Flower Pollination Algorithm, Hybrid Optimization, Global Optimization, Particle Swarm 

Optimization, Constrained Optimization. 

 

 

1 Introduction 

 

Optimization is a field of applied mathematics that deals with finding the external values of a 

function in a domain of definition, subject to various constraints on the variable values [1]. 

Global optimization refers to finding the extreme value of a given nonconvex function in a 

certain feasible region and such problems are classified in two classes; unconstrained and 

constrained problems. Solving global optimization problems has made great gain from the 

interest in the interface between computer science and operations research [1-5]. 

There are two categories of optimization techniques: exact and heuristic. Exact strategies 

guarantee the optimal solution will be found and work well for many problems. However for 

complex problems or ones with a very large number of parameters, exact strategies may 

require very high computational costs [3]. A large amount of real-world problems fall in this 

category of complex problems, and in order to solve them in a reasonable amount of time a 

different approach is needed [3,6]. For these problems, Meta-heuristic algorithms are 

considered as efficient tools to obtain optimal solutions [6-29]. Two important characteristics 
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of meta-heuristics are intensification and diversification. Intensification, also called 

exploitation, intends to use the information from the current best solutions. This process 

searches around the neighborhood of the current best solutions and selects the best candidates. 

Diversification, also called exploration, guarantees that the algorithm can explore the search 

space more efficiently, often by randomization. This is the essential step that guarantees that 

the system can jump out of any local optima and can generate new solutions as diversely as 

possible [6-7].  

These methods have received remarkable attentions as they are known to be derivative 

free, robust and often involve a small number of parameter tunings [6-29]. However, applying 

such single methods is sometimes too restrictive, especially for high dimensional and 

nonlinear problems. This is because these methods usually require a substantially huge 

amount of computational times and are frequently trapped in one of the local optima. 

Recently, different methods combining meta-heuristics with local search methods is a 

practical remedy to overcome the drawbacks of slow convergence and random constructions 

of meta-heuristics [30-38]. In these hybrid methods, local search strategies are inlaid inside 

meta-heuristics in order to guide them especially in the vicinity of local minima, and 

overcome their slow convergence especially in the final stage of the search.  

Recently, Yang [39] developed a new Flower pollination algorithm (FP) that draws its 

inspiration from the flow pollination process of flowering plants. In this paper, a new hybrid 

optimization method is introduced. The proposed method, hybrid flower pollination algorithm 

with particle swarm optimization algorithm for solving constrained global optimization 

problems (FPPOS). The experimental results showed that the accuracy and speed 

performance of the FPPSO method had outperformed the other existing methods.  

This paper is organized as follows: after introduction, the original Flower pollination 

algorithm is briefly introduced. Section 3 introduces the meaning of chaos. In section 4, the 

proposed algorithm is described, while the results are discussed in section 5. Finally, 

conclusions are presented in section 6. 

 

 

2 The Flower pollination Algorithm  

 

Flower Pollination Algorithm (FP) was founded by Yang in the year 2012. Inspired by the 

flow pollination process of flowering plants are the following rules: 

 

Rule 1: Biotic and cross-pollination can be considered as a process of global 

pollination process, and pollen-carrying pollinators move in a way that obeys Le'vy 

flights.  

Rule 2: For local pollination, a biotic and self-pollination are used. 

Rule 3: Pollinators such as insects can develop flower constancy, which is equivalent 

to a reproduction probability that is proportional to the similarity of two flowers 

involved. 

Rule 4: The interaction or switching of local pollination and global pollination can be 

controlled by a switch probability p[0,1], with a slight bias toward local pollination . 

 

In order to formulate updating formulas, we have to convert the aforementioned rules into 

updating equations. For example, in the global pollination step, flower pollen gametes are 

carried by pollinators such as insects, and pollen can travel over a long distance because 

Methods and Codes Global Optimization 
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insects can often fly and move in a much longer range [39].Therefore, Rule 1 and flower 

constancy can be represented mathematically as: 

 

))((1 BxLxx t

i

t

i

t

i                                (1) 

 

Where t

ix is the pollen i or solution vector xi at iteration t, and B is the current best solution 

found among all solutions at the current generation/iteration. Here γ is a scaling factor to 

control the step size. In addition, L(λ) is the parameter that corresponds to the strength of the 

pollination, which essentially is also the step size. Since insects may move over a long 

distance with various distance steps, we can use a Le'vy flight to imitate this characteristic 

efficiently. That is, we draw L > 0 from a Levy distribution: 
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Here, Γ(λ) is the standard gamma function, and this distribution is valid for large steps s > 0. 

Then, to model the local pollination, both Rule 2 and Rule 3 can be represented as 
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(3) 

 

Where 
t

jx and t

kx are pollen from different flowers of the same plant species. This essentially 

imitates the flower constancy in a limited neighborhood. Mathematically, if 
t

jx and t

kx comes 

from the same species or selected from the same population, this equivalently becomes a local 

random walk if we draw U from a uniform distribution in [0, 1].Though Flower pollination 

activities can occur at all scales, both local and global, adjacent flower patches or flowers in 

the not-so-far-away neighborhood are more likely to be pollinated by local flower pollen than 

those faraway. In order to imitate this, we can effectively use the switch probability like in 

Rule 4 or the proximity probability p to switch between common global pollination to 

intensive local pollination. To begin with, we can use a naive value of p = 0.5 as an initially 

value. A preliminary parametric showed that p = 0.8 might work better for most applications 

[39]. 

The basic steps of FP can be summarized as the pseudo-code shown in Fig. 1. 

 
 

Flower pollination algorithm 

Define Objective function f (x), x = (x1, x2, ..., xd) 

Initialize a population of n flowers/pollen gametes with 

random solutions 

Find the best solution B in the initial population 

Define a switch probability p ∈  [0, 1] 

Define a stopping criterion (either a fixed number of 

generations/iterations or accuracy) 

while (t <MaxGeneration) 

for i = 1 : n (all n flowers in the population) 

if rand <p, 
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Draw a (d-dimensional) step vector L which obeys a L´evy 

distribution 

Global pollination via )(1 t

i

t

i

t

i xBLxx   

else 

Draw U from a uniform distribution in [0,1] 

Do local pollination via )(1 t

k

t

j

t

i

t

i xxUxx 
 

end if 

Evaluate new solutions 

If new solutions are better, update them in the population 

end for 

Find the current best solution B 

end while 

Output the best solution found 

 
Fig. 1 Pseudo code of the Flower pollination algorithm 

 

 

3 Particle Swarm Optimization  

 

Particle swarm optimization (PSO) was developed by Kennedy and Eberhartin 1995 based on 

the swarm behavior such as fish and bird schooling in nature [40-41].Since then, PSO has 

generated much wider interests and forms an exciting, ever expanding research subject called 

swarm intelligence. This algorithm searches the space of an objective function by adjusting 

the trajectories of individual agents, called particles, as the piecewise paths formed by 

positional vectors in a quasistochastic manner. The movement of a swarming particle consists 

of two major components: a stochastic component and a deterministic component. Each 

particle is attracted toward the position of the current global best g and its own best location 

xi
* in history, while at the same time it has a tendency to move randomly. Let xi and vi be the 

position vector and velocity of particle i, respectively. The new velocity vector is determined 

by the following formula: 

 

)()( *

2211

1 t

ix

t

i

t

v

t

i xxrcxgrcvv       (4) 

 

Where r1 and r2 are two random vectors and each entry takes the values between 0 and 1. The 

parameters c1and c2 are the learning parameters or acceleration constants, which can typically 

be taken as, say, c1≈c2≈ 2.The initial locations of all particles should be distributed relatively 

uniformly so that they can sample over most regions, which is especially important for 

multimodal problems. The initial velocity of a particle can be taken as zero, i.e. vi
t=0 =0. The 

new positions can then be updated by: 

 
11   t

i

t

i

t

i vxx          (5) 

 

Although vi can be any value, it is usually bounded in some range [0,vmax]. 
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4 The Proposed Algorithm (IFPCH) for Solving Constrained Global Optimization Problems 

 

In the proposed algorithm, we used chaotic maps to tune the Flower pollination algorithm 

parameter and improve the performance [42-43]. The steps of the proposed algorithm for 

solving constrained global optimization problems are as follows: 

Step 1 Initialize the swarm by randomly assigning each particle to an arbitrarily initial 

velocity and a position in each dimension of the solution space.  

Step 2 Evaluate the desired fitness function to be optimized for each particle‘s position.  

Step 3 for each individual particle; update its historically best position so far, BestPi, if its 

current position is better than its historically best one.  

Step 4 Identify/Update the swarm‘s globally best particle that has the swarm‘s best fitness 

value, and set/reset its index as g and its position at gbestP.  

Step 5 Update the velocities of all the particles using equation (4).  

Step 6 Move each particle to its new position using equation (5).  

Step 7 Repeat steps 2–6 until convergence or a stopping criterion is met. 

Step 8The best solution found by PSO is regarded as initial points for FP algorithm. B 

Step 9 Calculate p by the selected chaotic maps. 

Step 10 If (rand <p) then global pollination via   ))(()(1 BxLfxx t

i

t

i

t

i   // )( f chaotic 

Le'vy flights 

                                         else do local pollination via   )(1 t

k

t

j

t

i

t

i xxUxx 
 . 

Step 11 Evaluate new solutions if better, update them in the population.  

Step 12 Find the current best solution B.   

Step 13 Output the best solution found. 

 

 

4.1 Handling Constraints 

 

One of the well-known techniques of handling constraints is using penalty function, which 

transforms constrained problem into unconstrained ones, consisting of a sum of the objective 

and the constraints weighted by penalties. By using penalty function methods, the objectives 

are inclined to guide the search toward the feasible solutions. Hence, in this paper the 

corresponding objective function used in is defined and described as: 

 

1

  ( ) ( ) (0, )
K

n

n

Min F x f x Max g


        (6) 

 

Where ( )f x  is the objective function for assignment problem,  is the penalty coefficient and 

it is set to a value of 1011 in this paper,  is the number of constraints and gn the constraints of 

the problem.  

 

 

5 Numerical Results  

 

Most real-world engineering optimization problems are nonlinear with complex constraints. 

In some cases, the optimal solutions of interest do not even exist. In order to evaluate the 

performance of FPPSO, it is tested against the following well-known benchmark design 

problems. 
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In this section, we will carry out numerical simulation based on some well-known 

constrained optimization problems to investigate the performances of the proposed algorithm. 

The best results obtained by FPPSO for test problems (1–7) are presented in Table 1. In these 

problems, the initial parameters are set at n= 50 and the number of iterations is set to t = 1000, 

inertial constant = 0.3, a cognitive constant = 1, and a social constant for swarm interaction = 

1. The selected chaotic map for all problems is the logistic map, according to the following 

equation: 

 

Yn+1 = Yn(1-Yn)                        (7) 

 

Clearly, Yn[0,1]  under the conditions that the initial Y0[0,1], where n is the iteration 

number and =4.The results of FPPSO algorithm are conducted from 30 independent runs for 

each problem. The comparison between the results determined by the proposed approach and 

the compared algorithms are reported in Table 1. The results have demonstrated the 

superiority of the proposed approach to finding the global optimal solution.  

 

 

5.1 Test problem 1 

 

This problem, originally introduced by Bracken and McCormick [44], is a constrained 

minimization problem. Table 1 shows the best solution from the FPPSO algorithm and also 

provides the results obtained using the GA (Homaifar et al. [20]), the evolutionary 

programming (Fogel [45]) and harmony search (Lee and Geem [46]).The problem can be 

formulated as: 
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5.2 Test problem 2 

 

This function is a minimization problem with two design variables and two inequality 

constraints. The FPPOS best solutions were compared to the previous solutions reported by 

Deb [47] using GA and Lee and Geem [45] using harmony search in Table 1. The problem 

formulation is: 
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5.3 Test problem 3 

 

The welded beam structure is a practical design problem that has been often used as a 

benchmark for testing different optimization methods [5, 47-49]. The structure consists of 

beam A and the weld required to hold the beam to member B. A welded beam is designed for 

minimum cost f(x) subject to constraints: g1 shear stress τ, g2 bending stress in the beam σ , g7 

buckling load on the bar )(x , g6 end deflection of the beam δ and g3; g4; g5 side 

constraints[2,5]. And there are four design variables. The FPPOS best solutions were 

compared to the previous solutions reported by other method in Table 1. The problem can be 

stated as follows: 
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5.4 Test problem 4 

 

Himmelblau’s Nonlinear Optimization Problem, This problem is originally proposed by 

Himmelblau [50] and solved using Generalize Reduced Gradient method (GRG).Table 1 lists 

the optimal values of the function problem obtained by the FPPSO algorithm, and compares 

them with earlier results reported by other methods Has been solved by Deb [47], Lee and 

Geem [46].  
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5.5 Test problem 5 

 

Tension/Compression String, This problem, is described by Arora [9], Coello [51] and 

Belegundu [52], and it consists of minimizing the weight of a tension/compression spring 

subject to constraints on minimum deflection, shear stress, surge frequency, limits on outside 

diameter and on design variables. The design variables are the wire diameter d=x1, the mean 

coil diameter D= x2, and the number of active coils N=x3 .Formally, the problem can be 

expressed as: 
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Table 1 lists the best solution of Tension/Compression String problem obtained by the FPPSO 

algorithm, and compares them with previous best solutions reported by Belegundu [52], Arora 

[9], Coello [51], Mahdavi et al. [53], Shi and Eberhart[41]. 

 

 

5.6 Test problem 6  

 

The pressure vessel design was previously analyzed by Sandgren [54] who first proposed this 

problem. The objective is to minimize the total cost f(x) including the cost of the material, 

forming and welding. There are four design variables: x1 (Ts, shell thickness), x2 (Th, spherical 

head thickness), x3 (R, radius of cylindrical shell) and x4 (L, shell length). Ts= x1 and Th= x2 

are integer multipliers of 0.0625 in. in accordance with the available thickness of rolled steel 

plates, and R=x3 and L= x4 have Continuous values of 40≤ R ≤ 80 in. and 20≤ L ≤60 in., 

respectively. The mathematical formulation of the optimization problem can be stated as 

follows: 
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The FPPSO algorithm was applied to the pressure vessel optimization problem and the 

optimal results were compared to earlier solutions reported by Sandgren [54] and Wu and 

Chow [55], Geem [46] and Mahdavi et al. [53], as shown in Table 1.  
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5.7 Test problem 7 

 

Heat Exchanger Design is a benchmark minimization problem that is regarded as difficult test 

case due to all the constraints are binding. This constrained function has eight variables and 

six inequality constraints, and has been solved previously by Deb [47], Michalewicz [56], 

Joines et al. [57], Lee and Geem[46]. The results show in Table 1.The problem formulation is: 
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Table 1 the best solution of proposed algorithm and other algorithms for solving constrained optimization 

problems 

 

Test 

problem 

Optimum 

solution 

The proposed algorithm  Other algorithms 

The best solution 
CPU time 

(s) 

Name The best 

solution 
CPU time (s) 

P1 1.3935 1.3935 0.07 

Homaifar et al. [20] 1.4339 Unavailable 

Fogel [45] 2.3772 Unavailable 

Lee and Geem[46] 1.3770 Unavailable 

P2 13.59085 13.59085 0.09 

Lee and Geem [46] 13.590845 Unavailable 
Deb [47] 13.58958 Unavailable 

Mahdavi et al. [53] 13. 590841 Unavailable 

P3 - 1.7248 0.48 

Fesanghary et al. [30] 1.7248 4. 138 

Shi and Eberhart [41] 1.72485084 Unavailable 

Lee and Geem [46] 2.38 Unavailable 
Mahdaviet al. [53] 1.7248 Unavailable 

Coello [58] 1.7483 Unavailable 

P4 - -31025.56540 0.25 
Fasanghary et al. [30] -31024.316 1.306 

Shi and Eberhart [41] -31025.56142 Unavailable 

P5 - 0.012665798152 0.77 

Arora [9] 0.0127302737 Unavailable 

Shi and Eberhart [41] 0.0126661409 Unavailable 

Coello [51] 0.012681 Unavailable 

Belegundu [52] 0.0128334378 Unavailable 

P6 - 6059.7033340 0.98 

Mahdavi et al.[53] 7197.730 Unavailable 

Lee and Geem[46] 7198.433 Unavailable 
Wu and Chow[55] 7207.494 Unavailable 

Sandgren [54] 7980.894 Unavailable 

P7 7049.330923 7049.330923 1.00 

Lee and Geem [46] 7057.274414 Unavailable 

Deb [47] 7060.221 Unavailable 

Michalewicz [56] 7377.976 Unavailable 

Joines [57] 7068.6880 Unavailable 
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6 Conclusions 

 

In the present study, the FPPOS algorithm has been employed to solve constrained 

optimization problems. FPPOS has been validated using several benchmark mathematical and 

engineering design problems. Several simulation examples have been completed to verify the 

weight of the planned algorithm. The comparison between the results determined by the 

proposed algorithm and the compared algorithms are reported in Table (1). 

The results have demonstrated the superiority of the FPPOS algorithm to finding the 

global optimum solution. The results indicate that FPPOS is more accurate, reliable and 

efficient at finding global optimal solution than are other algorithms. Therefore, the solutions 

obtained by our approach represent great contribution for finding the optimum solutions of 

these problems. 
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