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Abstract This paper investigates the problem of just-in-time permutation flow shop scheduling with 
limited buffers and linear job deterioration in an uncertain environment. The fuzzy set theory is 
applied to describe this situation. A novel mixed-integer nonlinear program is presented to minimize 
the weighted sum of fuzzy earliness and tardiness penalties. Due to the computational complexities, 
the proposed mathematical model is NP-hard and therefore a hybrid meta-heuristic approach based on 
imperialist competitive algorithm and genetic algorithm (ICA-GA) is designed to tackle the considered 
flow shop scheduling problem. A set of random test problems with different structures are developed 
to evaluate the performance of this approach. The results illustrate the effectiveness of the presented 
model and hybrid algorithm for different problem sizes.  
 
Keywords: Flow Shop Scheduling; Limited Buffer; Job Deterioration; Fuzzy Set Theory; Hybrid 
Algorithm. 
 
 
1 Introduction 
 
In classical flow shop scheduling problems, the capacity of intermediate buffer between any 
two consecutive machines are assumed to be infinite. In this situation, it is considered that 
jobs can be stored in the buffers for an unlimited time. This assumption obviously suggests a 
significant gap between theory and real-world manufacturing systems. Flow shop with limited 
intermediate buffers, is a generalization of classical flow shop environment. In this system, 
there are n jobs to be processed on m machines with first-in-first-out intermediate buffers. 
After finishing job process on a machine, it either has to be processed directly on the next 
machine or it has to be stored in the intermediate buffer. When buffer capacity completely 
occupied, the job has to remain on its current machine and this machine is blocked for other 
jobs. This blocking will be extended until the job, which momentarily is processed on the 
downstream machine, leaves that machine. Papadimitriou and Kanellakis [1] showed this 
problem is NP-hard in the strong sense even for two machines. For this reason, the most of 
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past studies focused on developing meta-heuristic algorithms for solving this problem. For 
instance, Norman [2] presented a tabu search method for flow shop scheduling problem with 
sequence-dependent setup times and finite intermediate buffers. Khosla [3] proposed a mixed 
integer linear model for a two-stage  flow shop and developed two lower bounds and several 
heuristics to solve it. Nowicki [4],Wang et al. [5] and Liu et al. [6] presented a tabu search 
approach, a hybrid genetic algorithm and a hybrid particle swarm optimization to minimize 
makespan, respectively. Recently, Pan et al. [7,8] proposed a chaotic harmony search 
algorithm and a hybrid discrete differential evolution algorithm to solve the problem. 

In classical flow shop systems, job processing times are also assumed to be constant. 
However, there are many manufacturing situations in which a job processed later needs more 
time than that same job processed earlier. First, Gupta and Gupta [9] investigated a scheduling 
problem in which the processing times depend on the jobs starting time with a polynomial 
function. This problem has been called scheduling with deteriorating jobs. They presented an 
example of steel rolling mills where the temperature of an ingot, while waiting to enter the 
rolling machine, drops below a certain level, requiring the ingot to be reheated before rolling. 
The flow shop scheduling problems with job deterioration is relatively unexplored. Mosheiov 
[10] addressed the makespan minimization problems under simple linear deterioration and 
proved that three-machine flow shop problem is NP-hard. Wang et al. [11] presented some 
polynomially solvable cases and developed several dominance properties and two lower 
bounds implemented in their proposed branch-and-bound approach. Wang and Xia [12] 
investigated no-wait flow shop scheduling problem with job deterioration. They showed that 
in this problem, polynomial-time algorithms exist to minimize the makespan and the weighted 
sum of completion times. Shiau et al. [13] addressed a simple linear deterioration model in a 
two-machine flow shop to minimize the mean flow time. Lee et al. [14] investigated a flow 
shop scheduling problem with job deterioration to minimize makespan. They developed an 
exact algorithm for solving the problems up to 32 jobs and a heuristic algorithm to solve 
large-sized cases. Ng et al. [15] considered a two-machine flow shop scheduling problem to 
minimize total completion time. They proposed lower bounds and dominance properties to 
speed up the proposed branch and bound algorithm. Yang and Wang [16] considered a two-
machine flow shop scheduling problem to minimize total weighted completion time when 
processing times are a simple linear function of their execution start times. They presented 
several dominance properties and two lower bounds for the proposed branch-and-bound 
algorithm. Recently, Bank et al. [17] applied particle swarm optimization and simulated 
annealing algorithms to solve the problem. In another study, Bank et al. [18] developed a 
branch and bound algorithm to minimize total tardiness in a two-machine flow shop system 
with deteriorating jobs.  

In addition to the above, in the real-world manufacturing systems, the time related 
parameters of jobs are often uncertain. There are basically two approaches to deal with this 
situation including the stochastic theory and fuzzy set theory. In the stochastic approach, 
uncertain data are modeled by specifying the probability distributions, for example inferred 
from past data. The fuzzy approach represents an alternative way to describe and model 
imprecision and uncertainty.  In this work, fuzzy set theory is employed to handle the 
uncertainties in production scheduling. It provides a convenient alternative framework for 
modeling real-world systems mathematically and presents several advantages in the use of 
heuristic approaches namely [19]: 
 The stochastic-probabilistic theory needs significant knowledge about the statistical 

distribution of the uncertain parameters. In contrast, fuzzy theory provides an efficient way 
to model imprecision even when no past data is available [20]. 
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 The use of stochastic-probabilistic theory involves extensive computation and requires 
complete knowledge on the statistical distribution of the uncertain time parameters [21]. 

 Using fuzzy set theory decreases the computational efforts of the scheduling problem in 
comparison with the stochastic – probabilistic theory [22]. 

 Fuzzy theory is capable to make use of fuzzy rules in heuristic algorithms. 
 Instead of optimizing the average behaviours, as in stochastic-probabilistic theory, fuzzy 

theory is looking for a solution to satisfy all constraints to some extent with a sufficient 
level of confidence. 

 
Fuzzy scheduling has two major applications: scheduling under flexible constraints and 

scheduling under incomplete or imprecise information [23]. This study fits into the second 
class.  

The concept of fuzzy sets was proposed by Zadeh [24]. Computing the fuzzy earliness 
and tardiness in scheduling problems were presented by Wu [25]. Recently Lai and Wu [26] 
have investigated the evaluation of the fuzzy completion times in the fuzzy flow shop 
scheduling problems using the virus-evolutionary genetic algorithms. 
In this paper, a permutation flow shop system with limited intermediate buffers and 
deteriorating jobs is investigated under fuzzy environment. Here, a mixed integer nonlinear 
program is formulated to minimize the weighted sum of fuzzy earliness and tardiness 
penalties. This problem is in accordance with the concept of just-in-time (JIT) production. 
The earliness penalty is used for jobs which are produced earlier than their due dates and may 
cause inventory holding cost. In addition, the tardiness penalty is considered for missing a 
job’s due date resulting dissatisfaction and lost sale. In this study, a hybrid meta-heuristic 
approach based on imperialist competitive algorithm (ICA) and genetic algorithm (GA) is 
proposed to find efficient solutions in reasonable computational times.  

The paper is organized as follows. Section 2 gives brief basics about fuzzy set theory. In 
section 3, the proposed problem is described and modeled. Section 4 introduces the proposed 
solution approaches. Section 5 presents the experimental design which compares the achieved 
results of meta-heuristic approaches. Finally, Section 6 consists of conclusions and future 
work. 

 
 

2 Fuzzy set theory  
 
In this section, some related concepts of fuzzy set theory, which are necessary for the 
considered problem, are reviewed. Subsections 2.1 and 2.2 are assigned to the definition of 
fuzzy numbers and fuzzy earliness / tardiness calculations, respectively.  

 
 

2.1 Fuzzy numbers 
 
The fuzzy subset of real numbers R is defined by a function : [0,1],a R  called 
membership function of. The level   set of a , denoted by a , is defined by   

{ : }aa x R      for all (0,1]  . It is seen that if is a fuzzy number, then the  set of is a 
closed, bounded and convex subset of R, namely a closed interval in R. In this case, it is 
denoted by [ , ].L Ua a a      
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Proposition 2.1.1. Leta  and b be two fuzzy numbers. Then a  b and a  b  are also fuzzy 
numbers:  
( ) [ , ]l l u ua b a b a b             (1) 

( ) [ , ]l u u la b a b a b             (2) 
 
Furthermore,  

 
(max{ , }) [max{ , }, max{ , }]l l u ua b a b a b           (3) 
 
In the application of fuzzy theory, the triangular and trapezoidal fuzzy numbers are utilized, 
frequently. In this study, processing times and due dates are considered as triangular and 
trapezoidal fuzzy numbers, respectively.  
The triangular fuzzy number a is denoted by ( , , )l ua a a a and its membership function is 
defined by: 
 

( ) / ( )
( ) ( ) / ( )

0

l l l

u u u
a

x a a a ifa x a
r a x a a ifa x a

otherwise


    
    



  (4)

 
The level  set of a  is: [(1 ) , (1 ) ]l ua a a a a         That is, 

(1 ) (1 ) .l l u ua a a and a a a            
 

It can be shown that a b  calculated through Eq. (5) is also a triangular fuzzy 
number. ( , , ) ( , , ) ( , , )l u l u l l u ua b a a a b b b a b a b a b                                             (5) 

 
The trapezoidal fuzzy number is also introduced to describe the fuzzy due dates. For a 

trapezoidal fuzzy number denoted as 1 2( , , , )l ua a a a a , the membership function is given by: 
 

1 1

1 2

2 2

( ) / ( )
1

( )
( ) / ( )

0

l l l

a u u u

x a a a ifa x a
ifa x a

x
a x a a ifa x a

otherwise



    
   

   




 

 (6)

 
It can be seen that: 1 2(1 ) (1 )l l u ua a a and a a a           where [ , ]l ua a a     .  
In this study, processing times and due dates are considered as ( , , )L U

ij ij ij ijp p p p  and 

1 2( , , , )L U
j j j j jd d d d d respectively.  
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2.2 Fuzzy Earliness and Tardiness  
 
From Proposition 2.1.1, the values of earliness jE and tardiness jT of each job j are fuzzy 
numbers and is defined as follows: 

max{0,  }j j jE d C     (7) 

and max{0,  }.j j jT C d     (8) 
 
Therefore, the level  closed intervals of jE and jT can be transacted by:  

 
max{0,  },L L U

j j jE d C     max{0,  },U U L
j j jE d C    

                                                             (9)
 

max{0,  },L L U
j j jT C d     max{0,  }.U U L

j j jT C d    
       (10)                                                                                    

 
As mentioned above, the proposed objective function is the weighted sum of fuzzy earliness 
and tardiness penalties:  

1

( ) ( )
n

j j j j
j

f e E t T


             (11)  

For minimizing this fuzzy-valued objective function, the ranking method proposed by 
Fortemps and Roubens [27] is applied. In this method, for any two fuzzy numbers a andb , 
a b  if and only if ( ) ( )a b   , where ( )a   is calculated through Eq. (12). 

 
1

0

1( ) ( ) .
2

L Ua a a d                               (12) 

Given that: 

1 1

( ) [ ( ), ( )] [ ( ), ( )],
n n

L U L L U U
j j j j j j j j

j j
f f f e E t T e E t T        

 

          

                                   (13) 

and substituting Eq. (13) in Eq. (12), it is seen that
1

1( ( )) ( )
2

n

j j j
j

f e h t u 


  where: 

1 1

0 0

max{0, } max{0, }L U U L
j j j j jh d C d d C d          

                                                      (14) 
 and

                                                                                   

 
1 1

0 0

max{0, } max{0, } .L U U L
j j j j ju C d d C d d                                                                (15) 

 
The above ( ( ))f  is calculated considering the fuzzy processing times 

( , , )L U
ij ij ij ijp p p p  as triangular fuzzy numbers and the fuzzy due dates 

1 2( , , , )L U
j j j j jd d d d d  as trapezoidal fuzzy numbers for  1,...,j n and 1,..., .i m Therefore, 

it is seen that:  

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n 
20

25
-0

7-
12

 ]
 

                             5 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html


30 M. Jannatipour, et al., / IJAOR Vol. 4, No. 3, 25-48, Summer 2014 (Serial #13) 

 

1( ) (1 )L L
j j jd d d     and 2( ) (1 ) .U U

j j jd d d      
 
Based on the triangular shape of the processing times, the fuzzy completion time of each job j     
( jC ) will turn out to be a triangular fuzzy number ( , , ).L U

j j j jC C C C  Therefore:  

( ) (1 )L L
j j jC C C     and ( ) (1 ) .U U

j j jC C C      (16) 
 

Now, regarding the graph of jC  as triangle and the graph of jd as trapezoid, there will be 
five cases describing their positional relations [25]. In other words, the following five cases 
are supposed to be discussed in order to calculate jh and ju in Eqs. (14) and (15): 

Case (I): If U L
j jC d  then 

 

1 2
1 ( 2 ).
2

L U L U
j j j j j j j j j j j je h t u e d d d d C C C         (17) 

Case (II): If 1j jC d and U L
j jC d  then

 2

1 2
1

( )1 1( 2 ) ( ) .
2 2

U L
j jL U L U

j j j j j j j j j j j j j j U L
j j j j

C d
e h t u e d d d d C C C e t

C C d d


         
  

   

 
(18) 

Case (III): If 1 2j j jd C d   then 

2 1
1 1( ) ( ).
2 2

U L U L
j j j j j j j j j j j j j je h t u e d d C C t C C d d           

    (19) 
Case (IV):  If 2j jC d and L U

j jC d  then  
2

1 2
2

( )1 1( 2 ) ( ) .
2 2

U L
j jL U L U

j j j j j j j j j j j j j j L U
j j j j

d C
e h t u t C C C d d d d e t

C C d d


         
  

 (20) 

 
Case (V): If U L

j jd C then the graph of jd  is completely on the left of the graph of 

,jC which gives:  

1 2
1 ( 2 ).
2

L U L U
j j j j j j j j j j j je h t u t C C C d d d d                       (21) 

 
For each job j, one of the above five cases (I)–(V) will be observed, and j j j je h t u can 

be obtained. In this work, ICA, GA and hybrid ICA-GA methods are designed to find a near 
optimal schedule.
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3 Problem Definition 
 
In this section, the considered problem is defined, and a novel mixed integer non-linear 
mathematical model is formulated. The problem can be stated as follows. n jobs from a set         
j= {1,2,3,...,n} will be sequentially processed on machine 1, machine 2, and so on until last 
machine m.  Preemption and machine idle time is not allowed.  At any time, each machine can 
process at most one job and each job can be processed on at most one machine. The sequence 
in which the jobs are to be processed is the same on all machines. Between each successive 
pairs of machines i and i+1, there exists a limited buffer with the capacity size equal 
to 0iB  . Each job must go through the buffer Bi on its route from machine i to i+1, and jobs 
obey the First-In-First-Out rule in the buffer. If the buffer Bi is completely occupied, the job 
has to remain on the current machine i until a free place is available in the buffer. The release 
time of all jobs is zero and the setup time on each machine is included in the processing time. 
The jobs are also assumed to be deteriorating. The processing times of jobs are considered as 
linear function of their starting process times on machines. Processing times and due dates are 
also assumed to be triangular and trapezoidal fuzzy numbers, respectively. Transportation 
times between machines are negligible and processors are available with no breakdowns. The 
aim is to find a sequence for processing all jobs on all machines so that the weighted sum of 
fuzzy earliness and tardiness penalties is minimized. 
 
 
3.1 Notations  
 

Indices  
i  index for machines        

j  index for jobs 

k  index for job positions in a sequence   
parameters  
n  number of jobs 
m  number of machines 

j  Deterioration rate of job j 

je  Earliness penalty of job j 

jt  Tardiness penalty of job j 

,i jp  Normal fuzzy processing time of job j on machine i 

jd  Fuzzy due date of job j 

Bi  buffer capacity between two successive machines i, i+1 
 
Decision variables 

 

,i kC  Fuzzy completion time of kth job on machine i 

jC  
Final fuzzy completion time of job j 

jE  Fuzzy earliness of job j 

jT  Fuzzy tardiness of job j 

jkx                                                   1       If job j is selected for sequence position k,  

                                                     0       otherwise  
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3.2 The Mathematical Model 
 
In this section, a Mixed Integer nonlinear Programming (MINP) mathematical model is 
presented. The objective function and constraints can be formulated as follows: 

1

min ( )
n

j j j j
j

z e E t T


   

                                                                                                   (22)                                                                    
s.t. 

1
1

n

jk
k

x



        

j                                                   (23) 
 

1

1
n

jk
j

x



        

k                            (24) 

1,1 1, 1
1

( . )
n

j j
j

C p x


 

               (25)
 

,1 1,1 , 1
1

(( ). )
n

i i i j j
j

C C p x


   

    
2,3,...,i m             (26) 

1, 1, 1 1,
1

(( ). )
n

k k j jk
j

C C p x


   

  
12,3,..., 1k B          (27) 

11, 1, 1 1, 2, 1
1

((max( , )). )
n

k k j k B jk
j

C C p C x  


   

   
1 1k B                  (28) 

, , 1 1, ,
1

(((max( , ))(1 ) ). )
n

i k i k i k j i j jk
j

C C C p x 


     

        
2,3,..., 1i m      

2,3,..., 1ik B      (29) 
 

, , 1 1, , 1, 1
1

(max((max( , ))(1 ) , ). )
i

n

i k i k i k j i j i k B jk
j

C C C p C x    


     

 
2,3,..., 1i m       (30) 

1ik B                                                                                                                                 

, , 1 1, ,
1

(((max( , ))(1 ) ). )
n

m k m k m k j m j jk
j

C C C p x 


     

    
2,3,...,k n                (31) 

 

,
1
( . )

n

j m k jk
k

C C x


 

  
1,2,...,j n           (32) 

 
max(0, )j j jE d C     1,2,...,j n            (33) 

 
max(0, )j j jT C d       1,2,...,j n                 (34) 

 
{0,1}jkx  1,2,...,j n      1,2,...,k n              (35) 
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Eq. (22) shows the objective function which is the minimization of the weighted sum of fuzzy 
earliness and tardiness penalties of all jobs. Constraint (23) ensures that each job is assigned 
to exactly one sequence position and constraint (24) ensures that in each sequence position, 
one and only one job is processed. Constraints (25) determine the fuzzy completion time of 
the first job on machine 1. Constraints (26) illustrate the fuzzy completion time of the first job 
on machine i. Constraint (27) and (28) are related to the fuzzy completion time of the kth job 
on the first machine regarding the job sequence, buffer capacity and blocking possibility. 
Constraint (29) and (30) give the completion time of the kth job on machine i taking into 
account buffer capacity, blocking possibility and deterioration rate.  

The actual fuzzy processing times of the jobs that have to wait before being processed on 
a machine i will be calculated in accordance with the fuzzy starting time and the deterioration 
rate. In other words, as shown in Eq. (36), the processing time of each job on each machine is 
a linear function of its starting time [28]: 

 
[ , ] , ,( )i j i j j i jp p s           (36) 

                   
where  is the fuzzy actual processing time of job j on machine i and  is the fuzzy starting time 
of job j on machine i.  

Obviously, the longer a job has to wait for being processed, the longer is its actual 
processing time. In constraints (25) to (28), disregarding the deterioration of jobs, the normal 
processing times have been applied because the mentioned jobs will not wait before being 
processed. 

The fuzzy completion time of the kth job on the last machine is calculated in constraints 
(31) considering deterioration rates. Constraint (32) determines the fuzzy completion time of 
job j after all the stages of the flow shop system. For each job, constraints (33) and (34) give 
the fuzzy earliness and tardiness values, respectively. Finally, constraint (35) indicates that the 
variable jkx  is binary. 
 
 
4 Proposed algorithms 
 
In this section, the proposed genetic, imperialist competitive and hybrid algorithms will be 
introduced.  
 
 
4.1 A genetic algorithm solution approach 
 
In general, the both exact and heuristic algorithms can be used to solve scheduling problems. 
Exact methods are only practical for small instances and even in that case, the computational 
time tends to be very high. Therefore, researchers have focused to develop heuristics. Genetic 
algorithm (GA) is a well-known meta-heuristic approach inspired by the natural evolution of 
the living organisms. GA is applied to tackle both discrete and continuous optimization 
problems. Generally, the input of the GA is a set of solutions called population of individuals 
that will be evaluated. A fitness value is assigned to each solution (chromosome) according to 
its performance. The population evolves by a set of operators until some stopping criterion is 
visited. The chromosome representation and the designed genetic operators are two important 
challenges in the design of GA. A detailed description of main factors for the proposed GA is 
reported below. 
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4.1.1 Initialization 
 
The initial population consists of Pop_size chromosomes of solutions that each chromosome 
is related to a candidate solution of the problem. The most frequently used encoding scheme 
for the flow shop scheduling problem, is a simple permutation of jobs [29]. The relative order 
of jobs in the permutation illustrates the processing order of jobs on all machines in the shop. 
To qualify encoding scheme, the permutation of jobs is shown through random keys (RK). 
Each job has a random number between 0 and 1, and these RKs show the relative order of the 
jobs. In this paper, the largest RK value is firstly handled and assigned the smallest rank value 
1, the second largest RK value is addressed and assigned a rank value 2, and so on.  For 
example, the encoded solution {0.47, 0.83, 0.51, 0.12, 0.26} represents the permutation {2, 3, 
1, 5, 4} (Fig 1).  
 

 
Fig. 1 Jobs permutation generation  

 
4.1.2 Evaluation 
 
The fitness value of each chromosome is evaluated by Eq. (37). 
 

1

( ) 1/ (1 ( )) 1,..., _
n

j j j j
j

f k e h t u k pop size


             (37) 

where, ( )f k  is the fitness value of th chromosome in a population and  
1

( )
n

j j j j
j

e h t u


  is 

the defuzzified objective function of the problem.   
 
 
4.1.3 Parent selection strategy 
 
The parent selection strategy means how to choose chromosomes in the current population 
that will create off-spring for the next generation [30]. The most common method for the 
selection mechanism is the “roulette wheel” sampling. In this method each chromosome is 
selected based on probability proportionated to its fitness value (Eq. 38). Solutions with 
higher fitness value have more chance to be in the pool of parents for creation of off-springs. 
A chromosome can be selected as a parent one more time. 
 

_

1
( ) ( ) / ( ( )) 1,..., _

pop size

j
PV k f k f j k pop size



                   (38) 
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4.1.4 Design of genetic operators 
4.1.4.1 Crossover operator  
 
In this paper, uniform crossover namely position-based operator [31], is applied. The steps of 
this method are introduced as follows: 
1. Randomly choose two sequences from the population as two parents.  

 
Parent 1 3 2 5 1 4 

 
Parent 2 4 1 3 5 2 

 
2. Create binary string (BS) and assign a randomly generated binary (0,1) to each cell. 

 
BS 0 1 0 0 1 

 
3. Copy the genes from the parent 1 to the locations of the ‘‘1’’s in the binary string to the 

same positions in the offspring. 
 

Offspring  2   4 
 
4. The genes that have already been selected from the parent 1 are deleted from the parent 2, 

so that the repetition of a gene in the new offspring is avoided. 
 

Parent 2 - 1 3 5 - 
 
5. Complete the remaining empty gene locations with the undeleted genes that remain in the 

parent by preserving their gene sequence in parent 2. 
 

Offspring 1 2 3 5 4 
 
 
4.1.4.2 Mutation operator  
 
The main purpose of applying mutation is to maintain the diversity of the population in the 
successive generations and to avoid convergence to a local optimum. In this study, a mutation 
operator, called single point mutation (SPO) is used. The procedure of SPO can be defined as 
follows: the RK of a randomly selected job is randomly regenerated and then, the permutation 
of jobs is rewritten.  An illustrative example is shown in Fig 2.  
 

 
 
Fig. 2 Single point mutation 
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4.1.4.3 Reproduction operator 
 
In this paper, an elitism strategy is applied as reproduction operator. In this strategy, the best 
chromosomes are automatically copied to the next generation. 
 
 
4.1.5 Stopping criteria 
 
In this study, two stopping criteria are applied: (1) maximum number of elapsed generation 
(Gmax) and (2) number of successive generations when the algorithm doesn’t have any 
improvement. This number is considered as 0.25*Gmax . 

Therefore, the algorithm runs until one of these stopping criteria is visited. 
The values of the control parameters of the proposed GA are determined using Taguchi 
experimental design method as follows: pop_size =70, Pc = 0.6, Pm= 0.12 and Gmax=150.  
 
 
4.2 Imperialist competitive algorithm  
 
According to the world history, imperialism is a policy for expanding the authority of a 
powerful government. By acquiring territory or dominating the economic and political 
systems of other countries, an imperialist try to attempt to master other feebler countries. Also 
in some cases the reason of control another country was just preventing the opponent 
imperialist from taking possession of it. This competition resulted in a growth of the great 
empires and fall down of weaker ones [32]. Imperialist competitive algorithm, proposed by 
Atashpaz-Gargari and Lucas [33] is a novel global search heuristic that uses imperialistic 
competition process as a source of inspiration. 
 
 
4.3 Hybrid ICA-GA 
 
The performance of the proposed hybrid imperialist competitive algorithm- genetic algorithm 
(ICA-GA) can be divided into two sections. The first section is producing an appropriate 
solution. In fact, the first part is an input for the second one. The task of the second part is 
improving the population into a near optimal sequence. Since ICA make more searches on 
different sequences of JIT flow shop due to its high convergence rate and execution speed, it 
is used as an appropriate tool for producing the appropriate and good first population for GA. 
On the other hand, GA can be a good tool for improving the population due to its accuracy in 
finding near global optimum solutions. The main steps of the designed hybrid algorithm are 
summarized in the pseudo code shown in Fig. 3. 
 
 
5 Computational results  
5.1 Data Generation  
 
To solve the presented mathematical model, and for the purpose of evaluating the 
effectiveness of the proposed hybrid algorithm, a number of test problems are randomly 
generated with different structures. Input data, such as number of jobs, number of machines, 
processing times, due dates, deterioration rates and buffer capacities, are generated as shown 
in Table 1. 
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As can be seen in Table 1, the values of 2jd  were generated between (1 / 2)R M   
and, where and R are two parameters calling tardiness factor and due date range. In this study, 
it is considered that 0.2,0.6  and 0.6,1.6R  . These values typically cover various 
problems and hence, they are appropriate for the earliness/tardiness objective function                 
[34]. M is the maximum completion times of all jobs that are obtained from Johnson’s order. 

 
 

 
 
 
                                                    Generate initial population (initial countries) 
                                                    Evaluate power of each country 
                                                    Create initial empires 
                                                   (Consider some of countries with best powers as imperialists and remaining them as colonies) 
 
                                                   While (number of empires >1) 
                                                   Perform assimilation approach 
                                                   Perform revolution 
                                                   Calculate power of each country 
 
                                                                            If (power of colony>power of imperialist) 
                                                                            Swap colony and its imperialist 
                                                                            End if 
 
                                                  Calculate power of each empire 
                                                  (Summation of imperialist power and proportion of its colonies) 
                                                  Select the weakest colony of the weakest empire 
                                                   Run imperialist competition strategy 
 
                                                                            If (empire loses all of its colonies) 
                                                                            Eliminate empire 
                                                                            End If 
 
                                                   End while 
 
  
                                                   Select a number of best solutions (countries) and consider them as chromosomes for GA 
 
 
                                                   Generate initial population of GA (Best selected solutions of ICA + new randomly generated 
chromosomes) 
                                                   Calculate fitness function of each chromosome 
 
                                                   For (number of elapsed generation (g) =1 to Gmax) 
                                                   Run genetic operators (crossover, mutation and elitism)  
 
                                                                           If (in 0.25* successive generations, the algorithm doesn’t have any 
improvement) 
                                                                           Break For 
                                                                           End If  
 
                                                   End For 

 
Fig.3 The main steps of the designed hybrid algorithm 
 
To produce trapezoidal fuzzy numbers jd , and triangular fuzzy numbers ijp the following 
methods are used: 

2 2 2 2( ' , , , ),j j j j j j j j jd d w w d w d d w     ( , , ).ij ij ij ij ij ijp p w p p w    

STEP.1 
Implementation 

 of  
ICA 

STEP.3 
Implementation 

 of  
GA 

STEP.2 
Selection 
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The values of controllable parameters for each type of numerical instance are presented in    
Table 2. Table 3 shows an example in small size, for a given problem of type a with five jobs 
and three machines. The computational results of the given test problem is shown in Table 4. 
This table contains fuzzy completion time (), sum of the fuzzy earliness and tardiness and the 
assigned position to each job (optimal jobs sequence) and finally, the obtained optimal value 
of objective function. As can be seen in Table 4, the optimal sequence of the given problem is 
(3, 5, 1, 4, 2) and the optimal value of objective function is 25.0738. 
 
Table 1  Information for the data generation 
 

Parameter Values 
No. of jobs (n) 4, 5, 6, 8, 10, 20, 30, 50,80 

No. of machines (m) 3, 4, 5, 10, 15 
Processing time ( ijp ) U[10,100] 

Due date () U[ (1 / 2)R M  , (1 / 2)R M  ] 
Tardiness factor ( ) 0.2, 0.6 

due date range (R) 0.6, 1.6 
, ' ,j j ijw w w  U[1, 5] 

deterioration rate () U[0, 0.01] 
earliness and tardiness 

penalties () U[0, 0.1] 

 
 

Table 2  The values of controllable parameters for each type of numerical instance. 
 

Type Τ R Range of 2jd  

a 0.2 0.6 [0.5M, 1.1M] 
b 0.2 1.6 [0, 1.6M] 
c 0.6 0.6 [0.1M, 0.7M] 
d 0.6 1.6 [0, 1.2M]  

 
 

Table 3  sample problem data. 
 

jt  je  j  jd  3, jp  2, jp  1, jp Job  

0.02173
6 

0.05790
7 

0.0026
24 

(277.11,283.06,289.01,29
7.96) 

(53.26,59.22,62.
18) 

(33.31,35.06,39.
82) 

(16.84,18.78,19.
72) 

1  

0.09428 0.09511
2 

0.0013
51 

(461.40,469.31,471.42,47
7.11) 

(81.10,86.42,91.
74) 

(12.55,13.21,14.
87) 

(65.57,69.02,78.
47) 

2  

0.07465
8 

0.03340
9 

0.0085
52 

(348.15,355.38,364.61,37
2.84) 

(36.61,38.54,42.
47) 

(68.91,72.53,73.
16) 

(81.91,84.11,88.
32) 

3  

0.00397
7 

0.00478
3 

0.0037
51 

(303.40,311.31,318.22, 
327.13) 

(61.51,68.96,72.
41) 

(68.61,71.17,75.
73) 

(32.10,34.84,36.
58) 

4  

0.06803
7 

0.05695
4 

0.0028
59 

(516.06,524.34,532.62,54
1.90) 

(18.35,22.48,23.
60) 

(56.29,59.25,64.
21) 

(90.52,96.34,10
1.15) 

5  
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Table 4 Results of the given problem. 
 

1jkx   0.5*( )j j j je h t u
 

Positional relation jC  Job 

13x  2.1878 V (317.07,335.85,359.67) 1 

25x  5.6487 II (477.11,505.36,547.72) 2 

31x  10.9454 I (187.43,195.18,207.95) 3 

44x  0.4678 I (395.48,418.38,451.37) 4 

52x  5.8242 I (248.22,263.38,280.55) 5 
 25.0738   Total 

 
 
5.2 Experimental Results 
 
Three algorithms GA, ICA and hybrid ICA-GA are applied to solve the considered scheduling 
problem. These algorithms have been coded using MATLAB 7.4 and executed in the Intel 
Core (TM) 2 Due 2.53 GHz and 4GB RAM personal computer. Before that, a number of 
random small-sized problems are solved using the optimal solution approach B&B employing 
the LINGO 9.0 software, and their computational times are evaluated. The information of the     
small-sized problems has been shown in Table 5. 
 
Table 5 The information of the random type small-sized problems 
 

Problem 

Problem 
information  

type No. of 
jobs 

No. of 
machines  

1 4 3  c 
2 4 4  b 
3 5 3  c 
4 5 4  d 
5 6 3  a 
6 6 4  a 
7 8 3  b 
8 8 4  c 
9 10 3  d 
10 10 4  a 

 
Obtained results of these small-sized problems have been shown in Table 6. As can be seen in 
Table 6, computational time of B&B method, even for small-sized problem is very long. For 
instance, for a given test problem with 10 jobs, the optimal solution has not been achieved 
after 12 hours. This can justify the use of meta-heuristic approaches to solve the considered 
fuzzy flow shop scheduling problem. 

At first, the genetic and imperialist competitive algorithms are applied to solve the 
problem, separately. For small-sized problems, these two algorithms reach to the optimal 
solution. 
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Table 6  Computational mean times to obtain optimal solutions by B&B, GA and ICA. 
 

Problem  

B&B  GA   ICA  

Best 
solution 

Optimal 
solution 

Mean 
CPU 
timea 

 Best 
solution 

Mean 
CPU 
timea 

 Best 
solution 

Mean 
CPU 
timea 

1 8.03 8.03 00:00:03  8.03 00:00:01  8.03 00:00:01 
2 25.22 25.22 00:00:12  25.22 00:00:01  25.22 00:00:02 
3 14.26 14.26 00:02:11  14.26 00:00:03  14.26 00:00:03 
4 139.47 139.47 00:03:28  139.47 00:00:04  139.47 00:00:04 
5 159.19 159.19 00:06:54  159.19 00:00:05  159.19 00:00:06 
6 181.65 181.65 01:21:31  181.65 00:00:06  181.65 00:00:06 
7 231.11 231.11 04:02:21  231.11 00:00:06  231.11 00:00:07 
8 70.31 70.31 08:52:37  70.31 00:00:09  70.31 00:00:08 
9 373.41 - 12:00:00  233.41 00:00:12  233.41 00:00:12 
10 1021.37 - 12:00:00  839.37 00:00:15  839.37 00:00:14 

a Computational time (hour: minute: second). 
 

However, the final solution of the GA is better than ICA in medium and large-sized instances, 
but the convergence rate and execution speed of ICA is higher than GA. A typical 
comparative performance of these two algorithms has been shown in Fig. 4. (As stated, ICA 
can be stopped in 2 ways, continuing until only one empire exists and continuing until a 
specified iteration is achieved.)  
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Fig. 4  Comparison between objective function values and convergence rates of GA and ICA for a given problem with 30 
jobs and 10 machines. 

 
The hybrid algorithm has been proposed to achieve good final solutions with reasonable 

computational time especially in medium and large-sized cases. The performance of this 
algorithm is compared with GA and ICA for a large number of instances with different 
structures.  

In order to provide a better computational experience, comparing the results with other 
works is forehead. By reviewing the literature, we found a similar work, of course with 
different structure, for our comparison purpose. The literature review specifies that there is no 
study on scheduling problems on permutation flow shop with limited intermediate buffers, 
deteriorating jobs, earliness/tardiness and fuzzy parameters simultaneously. So, we compare 
the proposed ICA-GA with a particle swarm optimization with local search (PSOLS) method 
proposed in [17].  
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Table 7 shows the obtained results of four algorithms for medium and large-sized 
problems. Each case is solved 10 times and finally, the best solution is reported. 
As shown in Table 7, the solutions obtained by the hybrid meta-heuristic approach are more 
efficient than the final solutions of medium and large-sized problems reported by other 
algorithms. In fact, the final solution of hybrid algorithm is better than other three algorithms.  
The most common performance measure used in the literature to compare four algorithms is 
the relative percentage deviation (RPD) which is computed as follows. 
 

lg min

min

*100asol sol
RPD

sol



       

                                                              (39) 

  
where lgasol  is the average solution value obtained for a given algorithm after 10 runs, and 

minsol is the best solution obtained for each instance by any of the four algorithms. Tables 8 
and 9, show the average RPD of four algorithms for medium and large-sized cases, 
respectively. 
Obviously, the hybrid algorithm provides better results than GA, ICA and PSOLS. In order to 
verify the statistical validity of the results shown in Tables 8 and 9, and to determine the best 
algorithm, design of experiments and analysis of variance (ANOVA) is performed and 
different algorithms are considered as a factor and the response variable RPD. The means plot 
and LSD intervals (at the 90% confidence level) of four algorithms are shown in Fig. 5 and 
Fig. 6 for medium and large-sized instances, respectively. The results demonstrate that there 
is a clear statistical difference among the performances of the algorithms.  
 
Table 7  The quality of results obtained for GA, ICA, ICA-GA and PSOLS in medium and large-sized problems.   
 

Instance  Problem size 
(job*machine) Type  GA ICA ICA-GA PSO LS 

 1 20*5 a 4243.8 4274.1 4243.8 4243.8 
2 20*5 b 4656.6 4685.7 4652.7 4652.7 
3 20*5 c 1352.5 1353.2 135٢.5 1352.5 
4 20*5 d 1757.1 1769.6 1759.5 1757.1 
5 20*10 a 8627.1 8678.8 8627.1 8630.3 
6 20*10 b 9276.7 9305.3 9276.7 9276.7 
7 20*10 c 3732.0 3770.3 3732.0 3732.0 
8 20*10 d 7510.5 7556.3 7510.5 7510.5 
9 20*15 a 14813.0 14870.1 14809.2 14809.2 
10 20*15 b 10205.1 10283.2 10205.1 10205.1 
11 20*15 c 4473.4 4533.1 4439.2 4461.8 
12 20*15 d 11025.2 11088.4 11011.3 11022.4 
13 30*5 a 8071.8 8129.8 8071.8 8071.8 
14 30*5 b 7185.8 7238.7 7111.3 7160.0 
15 30*5 c 1354.8 1416.7 1343.2 1343.2 
16 30*5 d 5630.6 5687.5 5611.9 5641.7 
17 30*10 a 19479.3 19588.1 19479.3 19479.3 
18 30*10 b 16435.7 16506.7 16418.5 16431.7 
19 30*10 c 7530.3 7588.9 7510.0 7530.3 
20 30*10 d 10859.7 11178.8 10664.3 10774.7 
21 30*15 a 31214.0 31311.1 31119.6 31183.4 
22 30*15 b 31557.5 31617.8 31445.2 31541.1 
23 30*15 c 11418.3 11516.1 11403.2 11427.5 
24 30*15 d 25179.5 25331.1 24872.9 24907.5 
25 50*5 a 21706.4 22109.8 21302.0 21302.0 
26 50*5 b 19249.7 19355.4 19198.1 19240.6 
27 50*5 c 5634.5 5876.9 5602.0 5621.6 
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Instance  Problem size 
(job*machine) Type  GA ICA ICA-GA PSO LS 

28 50*5 d 14124.0 14334.2 14009.3 14060.4 
29 50*10 a 60304.2 60543.1 60243.8 60265.1 
30 50*10 b 47861.5 48344.7 47544.1 47903.2 
31 50*10 c 14867.7 15134.8 14654.2 14811.8 
32 50*10 d 47024.1 47187.2 46654.8 46971.7 
33 50*15 a 87769.1 88230.0 87545.5 87747.3 
34 50*15 b 99714.9 100233 99233.4 99274.3 
35 50*15 c 35218.7 35740.9 34980.6 35022.4 
36 50*15 d 73967.7 74560.8 73778.5 73810.3 
37 80*5 a 60068.2 60323.5 60008.4 60019.9 
38 80*5 b 68438.3 69130.7 68020.1 68098.8 
39 80*5 c 13450.0 13889.0 13129.8 13309.5 
40 80*5 d 43608.7 44321.6 43121.9 43222.5 
41 80*10 a 148917 151334 146556 146173.4 
42 80*10 b 150617 153217 149870 150105.3 
43 80*10 c 58565.0 59200.6 58565.0 58572.4 
44 80*10 d 109663.3 111232.2 108776.2 109572.6 
45 80*15 a 274895.0 277654.1 272114.3 272186.2 
46 80*15 b 281266.6 287655.1 278906.9 280326.6 
47 80*15 c 106896.4 107877.5 105998.0 106343.1 
48 80*15 d 177444.2 180556.3 175667.3 175919.3 

 
 
Table 8  Comparison between relative percentage deviation (RPD) of GA, ICA, ICA-GA and PSOLS for  medium-sized 
problems. 
 

PSO LS ICA-GA  ICA  GA  Type  Problem size 
(job*machine) instance 

0.52 0.44 1.68 0.54 a 20*5 1 
0.72 0.70 1.43 0.74 b 20*5 2 
1.43 1.07 3.98 1.60 c 20*5 3 
1.14 0.93 3.02 1.18 d 20*5 4 
0.38 0.51 1.10 0.29 a 20*10 5 
0.41 0.50 1.02 0.27 b 20*10 6 
1.42 1.53 2.77 1.12 c 20*10 7 
0.09 0.02 1.01 0.14 d 20*10 8 
0.18 0.13 0.57 0.22 a 20*15 9 
0.39 0.32 0.95 0.53 b 20*15 10 
1.35 1.22 2.63 1.47 c 20*15 11 
0.44 0.42 0.87 0.47 d 20*15 12 
1.15 0.83 1.72 1.27 a 30*5 13 
1.82 1.44 2.96 2.40 b 30*5 14 
6.58 6.08 11.57 7.49 c 30*5 15 
0.73 0.39 1.86 1.02 d 30*5 16 
0.21 0.15 0.50 0.22 a 30*10 17 
0.41 0.38 0.96 0.46 b 30*10 18 
1.33 1.21 1.62 1.42 c 30*10 19 
2.54 2.31 5.55 3.17 d 30*10 20 
0.69 0.72 0.93 0.66 a 30*15 21 
0.38 0.21 1.71 0.59 b 30*15 22 
1.44 1.53 1.98 1.40 c 30*15 23 
1.55 1.24 4.05 1.76 d 30*15 24 
1.14 1.01  2.35  1.27    Average 
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Table 9  Comparison between relative percentage deviation (RPD) of GA, ICA, ICA-GA and PSOLS for  
large-sized problems. 
 

PSO LS ICA-GA  ICA  GA  Type  Problem size 
(job*machine) instance 

1.73 1.18 5.94 2.68 a 50*5 1 
0.53 0.26 1.07 0.93 b 50*5 2 
2.84 2.08 6.92 3.81 c 50*5 3 
1.46 1.05 3.68 2.47 d 50*5 4 
0.40 0.37 0.92 0.64 a 50*10 5 
1.06 1.02 2.57 1.50 b 50*10 6 
3.04 3.62 6.83 2.87 c 50*10 7 
0.54 0.69 1.69 1.00 d 50*10 8 
0.52 0.48 1.16 0.57 a 50*15 9 
0.71 0.66 1.32 0.82 b 50*15 10 
1.24 1.04 3.26 1.64 c 50*15 11 
0.53 0.45 1.79 0.73 d 50*15 12 
0.25 0.17 1.29 0.34 a 80*5 13 
0.74 0.46 2.51 1.26 b 80*5 14 
5.39 4.80 9.68 6.48 c 80*5 15 
1.60 1.50 4.07 2.71 d 80*5 16 
2.35 2.27 5.49 2.43 a 80*10 17 
1.43 0.90 5.34 2.36 b 80*10 18 
0.89 0.87 1.77 0.91 c 80*10 19 
3.97 3.57 5.30 4.38 d 80*10 20 
2.15 1.76 3.67 2.41 a 80*15 21 
2.11 1.94 3.62 2.65 b 80*15 22 
2.27 1.59 3.67 2.75 c 80*15 23 
3.51 4.31 4.43 3.15 d 80*15 24 
1.72 1.54  3.67  2.15    Average 
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Fig. 5 The means plot and LSD intervals for RPD of four algorithms (medium-sized problems). 
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Fig. 6 The means plot and LSD intervals for RPD of four algorithms (large-sized problems). 
 
In order to consider the effects of number of jobs on four algorithms, a two ways ANOVA is 
applied. Plot of RPD for the interaction between the type of algorithm and number of jobs is 
illustrated in Fig. 7. As depicted, in all cases (n=20, n=30, n=50 and n=80), the ICA-GA has 
better performance than other algorithms. 
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Fig. 7  RPD for the interaction between the type of algorithm and the number of jobs. 

 
Another two ways ANOVA test is applied to see the effect of number of machines on 
performance of the four presented algorithms. The results are demonstrated in Fig. 8. In all 
cases (m=5, m=10 and m=15) the ICA-GA performs better than GA, ICA and PSOLS. 
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Fig. 8  RPD for the interaction between the type of algorithm and the number of machines. 

 
 
As shown in Fig. 4 and Fig. 5 and according to the computational results the overlap between 
GA, hybrid algorithm and PSOLS is considerable. Therefore, another criterion is required to 
judge about the capability of algorithms. We ran 48 problem instances (each instance has been 
performed in 10 replications) and the mean value of computational times is reported. The 
mean time of the hybrid algorithm was 14.06 % better than the GA and 21.51% better than 
PSOLS ones (see Table 10). 

 
Table 10  Superiority of ICA-GA in computational times (S) rather than GA and PSOLS for medium and large-sized 
problems   
 

Instance Problem size 
(job*machine) Type GA PSO LS ICA-GA 

Improvement (%)  
GA PSOLS 

1 20*5 a 24.22 26.08 22.61 7.17 15.39 
2 20*5 b 21.47 23.03 20.12 6.82 14.58 
3 20*5 c 20.14 21.03 18.73 7.70 12.47 
4 20*5 d 18.11 18.05 16.11 12.48 12.08 
5 20*10 a 25.32 26.03 22.75 11.54 14.68 
6 20*10 b 27.11 28.02 24.83 9.31 12.98 
7 20*10 c 24.18 26.00 22.64 6.99 15.05 
8 20*10 d 25.36 26.03 22.72 11.72 14.69 
9 20*15 a 22.65 23.09 20.35 11.58 13.74 
10 20*15 b 24.39 26.07 22.32 9.37 16.91 
11 20*15 c 22.17 23.09 20.71 7.10 11.53 
12 20*15 d 23.79 24.08 20.90 13.83 15.21 
13 30*5 a 25.31 27.04 22.59 12.49 20.18 
14 30*5 b 22.19 24.07 20.57 8.24 17.44 
15 30*5 c 26.11 28.10 23.77 10.17 18.56 
16 30*5 d 25.08 27.02 21.83 15.05 23.96 
17 30*10 a 27.35 29.04 24.72 10.73 17.55 
18 30*10 b 30.62 33.04 27.23 12.57 21.47 
19 30*10 c 32.21 34.06 29.31 9.93 16.24 
20 30*10 d 28.56 30.05 25.65 11.56 17.37 
21 30*15 a 34.90 35.06 30.75 13.68 14.20 
22 30*15 b 30.26 32.07 27.44 10.44 17.04 
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Instance Problem size 
(job*machine) Type GA PSO LS ICA-GA 

Improvement (%)  
GA PSOLS 

23 30*15 c 34.61 34.01 29.15 18.93 16.88 
24 30*15 d 35.85 37.03 31.01 15.61 19.43 
25 50*5 a 43.01 46.02 37.36 15.31 23.37 
26 50*5 b 42.04 49.02 36.70 14.55 33.56 
27 50*5 c 40.75 44.00 35.41 15.11 24.30 
28 50*5 d 4513 45.07 38.41 17.53 17.36 
29 50*10 a 48.37 49.10 41.14 17.69 19.46 
30 50*10 b 47.91 52.03 42.85 11.94 21.56 
31 50*10 c 48.52 52.02 42.15 15.25 23.57 
32 50*10 d 48.08 51.06 40.10 19.90 27.34 
33 50*15 a 61.10 67.05 54.58 12.11 23.03 
34 50*15 b 59.00 66.03 50.67 16.60 30.50 
35 50*15 c 59.93 65.08 52.46 14.37 24.19 
36 50*15 d 61.77 64.02 52.36 18.11 22.42 
37 80*5 a 73.23 83.07 60.44 21.24 37.52 
38 80*5 b 72.89 86.03 62.83 16.07 37.00 
39 80*5 c 71.24 79.09 60.44 17.95 30.94 
40 80*5 d 70.17 78.04 60.50 15.98 29.00 
41 80*10 a 86.54 92.04 73.71 17.42 24.88 
42 80*10 b 86.09 91.06 70.31 22.46 29.53 
43 80*10 c 86.43 93.06 74.21 16.48 25.41 
44 80*10 d 85.12 97.08 73.75 15.50 31.73 
45 80*15 a 104.41 112.06 90.81 14.99 23.41 
46 80*15 b 104.34 115.05 89.30 16.84 28.83 
47 80*15 c 110.15 118.05 90.98 21.18 29.86 
48 80*15 d 109.17 108.10 87.27 25.19 23.97 

Average      14.06 21.51 
 
 
The results show that, the proposed hybrid algorithm is still much better than PSOLS and thus 
is a reliable algorithm for treating such a problem.  
 
 
6 Conclusions and future work 
 
In this paper, a just-in-time flow shop scheduling problem with limited buffers and 
deteriorating jobs was investigated in a fuzzy environment. For this problem, a mixed integer 
non-linear program has been formulated. The aim of this model was to minimize the weighted 
sum of fuzzy earliness and tardiness penalties considering a set of jobs that have non-identical 
due dates. Due to NP-hardness of the problem, an efficient hybrid meta-heuristic approach 
based on imperialist competitive algorithm and genetic algorithm (ICA-GA) was proposed to 
solve the mathematical model. The objectives of proposing a hybrid algorithm were to 
improve the solution quality and to reduce the run time. Since, the initial solution is produced 
by ICA, having more rapid convergence rate, provide a better solution to be optimized by GA 
in fewer replications for finding the best solution. The performance of the proposed hybrid 
algorithm has been verified by a number of random numerical examples. Computational 
results demonstrated the superiority of the proposed approach in the jobs sequencing as 
compared with GA and ICA methods. The proposed algorithm was also compared with a 
similar work in the literature, PSOLS, and provided a much better solution quality in more 
reasonable time span. Future studies can focus on the other features of deterioration such as 
non-linear functions. In addition, designing other meta-heuristic approaches may be devised 
for the further works. Also, to improve the quality of solution in hybrid approach, local search 
methods can be employed. 
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