
International Journal of Applied Operational Research
Vol. 4, No. 3, pp. 25-48, Summer 2014

Journal homepage: www.ijorlu.ir

A Hybrid Approach for Fuzzy Just-In-Time Flow Shop
Scheduling with Limited Buffers and Deteriorating Jobs

M. Jannatipour*, B. Shirazi, I. Mahdavi

Received: 15 December 2013 ; Accepted: 10 May 2014

Abstract This paper investigates the problem of just-in-time permutation flow shop scheduling with
limited buffers and linear job deterioration in an uncertain environment. The fuzzy set theory is
applied to describe this situation. A novel mixed-integer nonlinear program is presented to minimize
the weighted sum of fuzzy earliness and tardiness penalties. Due to the computational complexities,
the proposed mathematical model is NP-hard and therefore a hybrid meta-heuristic approach based on
imperialist competitive algorithm and genetic algorithm (ICA-GA) is designed to tackle the considered
flow shop scheduling problem. A set of random test problems with different structures are developed
to evaluate the performance of this approach. The results illustrate the effectiveness of the presented
model and hybrid algorithm for different problem sizes.

Keywords: Flow Shop Scheduling; Limited Buffer; Job Deterioration; Fuzzy Set Theory; Hybrid
Algorithm.

1 Introduction

In classical flow shop scheduling problems, the capacity of intermediate buffer between any
two consecutive machines are assumed to be infinite. In this situation, it is considered that
jobs can be stored in the buffers for an unlimited time. This assumption obviously suggests a
significant gap between theory and real-world manufacturing systems. Flow shop with limited
intermediate buffers, is a generalization of classical flow shop environment. In this system,
there are n jobs to be processed on m machines with first-in-first-out intermediate buffers.
After finishing job process on a machine, it either has to be processed directly on the next
machine or it has to be stored in the intermediate buffer. When buffer capacity completely
occupied, the job has to remain on its current machine and this machine is blocked for other
jobs. This blocking will be extended until the job, which momentarily is processed on the
downstream machine, leaves that machine. Papadimitriou and Kanellakis [1] showed this
problem is NP-hard in the strong sense even for two machines. For this reason, the most of

 Corresponding Author. ()

E-mail: Mjp_eng@ymail.com (M. Jannatipour)

M. Jannatipour

Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran

B. Shirazi

Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran

 I. Mahdavi

Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 1 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

26 M. Jannatipour, et al., / IJAOR Vol. 4, No. 3, 25-48, Summer 2014 (Serial #13)

past studies focused on developing meta-heuristic algorithms for solving this problem. For
instance, Norman [2] presented a tabu search method for flow shop scheduling problem with
sequence-dependent setup times and finite intermediate buffers. Khosla [3] proposed a mixed
integer linear model for a two-stage flow shop and developed two lower bounds and several
heuristics to solve it. Nowicki [4],Wang et al. [5] and Liu et al. [6] presented a tabu search
approach, a hybrid genetic algorithm and a hybrid particle swarm optimization to minimize
makespan, respectively. Recently, Pan et al. [7,8] proposed a chaotic harmony search
algorithm and a hybrid discrete differential evolution algorithm to solve the problem.

In classical flow shop systems, job processing times are also assumed to be constant.
However, there are many manufacturing situations in which a job processed later needs more
time than that same job processed earlier. First, Gupta and Gupta [9] investigated a scheduling
problem in which the processing times depend on the jobs starting time with a polynomial
function. This problem has been called scheduling with deteriorating jobs. They presented an
example of steel rolling mills where the temperature of an ingot, while waiting to enter the
rolling machine, drops below a certain level, requiring the ingot to be reheated before rolling.
The flow shop scheduling problems with job deterioration is relatively unexplored. Mosheiov
[10] addressed the makespan minimization problems under simple linear deterioration and
proved that three-machine flow shop problem is NP-hard. Wang et al. [11] presented some
polynomially solvable cases and developed several dominance properties and two lower
bounds implemented in their proposed branch-and-bound approach. Wang and Xia [12]
investigated no-wait flow shop scheduling problem with job deterioration. They showed that
in this problem, polynomial-time algorithms exist to minimize the makespan and the weighted
sum of completion times. Shiau et al. [13] addressed a simple linear deterioration model in a
two-machine flow shop to minimize the mean flow time. Lee et al. [14] investigated a flow
shop scheduling problem with job deterioration to minimize makespan. They developed an
exact algorithm for solving the problems up to 32 jobs and a heuristic algorithm to solve
large-sized cases. Ng et al. [15] considered a two-machine flow shop scheduling problem to
minimize total completion time. They proposed lower bounds and dominance properties to
speed up the proposed branch and bound algorithm. Yang and Wang [16] considered a two-
machine flow shop scheduling problem to minimize total weighted completion time when
processing times are a simple linear function of their execution start times. They presented
several dominance properties and two lower bounds for the proposed branch-and-bound
algorithm. Recently, Bank et al. [17] applied particle swarm optimization and simulated
annealing algorithms to solve the problem. In another study, Bank et al. [18] developed a
branch and bound algorithm to minimize total tardiness in a two-machine flow shop system
with deteriorating jobs.

In addition to the above, in the real-world manufacturing systems, the time related
parameters of jobs are often uncertain. There are basically two approaches to deal with this
situation including the stochastic theory and fuzzy set theory. In the stochastic approach,
uncertain data are modeled by specifying the probability distributions, for example inferred
from past data. The fuzzy approach represents an alternative way to describe and model
imprecision and uncertainty. In this work, fuzzy set theory is employed to handle the
uncertainties in production scheduling. It provides a convenient alternative framework for
modeling real-world systems mathematically and presents several advantages in the use of
heuristic approaches namely [19]:
 The stochastic-probabilistic theory needs significant knowledge about the statistical

distribution of the uncertain parameters. In contrast, fuzzy theory provides an efficient way
to model imprecision even when no past data is available [20].

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 2 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

A Hybrid Approach for Fuzzy Just-In-Time Flow Shop Scheduling with Limited Buffers and Deteriorating Jobs 27

 The use of stochastic-probabilistic theory involves extensive computation and requires
complete knowledge on the statistical distribution of the uncertain time parameters [21].

 Using fuzzy set theory decreases the computational efforts of the scheduling problem in
comparison with the stochastic – probabilistic theory [22].

 Fuzzy theory is capable to make use of fuzzy rules in heuristic algorithms.
 Instead of optimizing the average behaviours, as in stochastic-probabilistic theory, fuzzy

theory is looking for a solution to satisfy all constraints to some extent with a sufficient
level of confidence.

Fuzzy scheduling has two major applications: scheduling under flexible constraints and

scheduling under incomplete or imprecise information [23]. This study fits into the second
class.

The concept of fuzzy sets was proposed by Zadeh [24]. Computing the fuzzy earliness
and tardiness in scheduling problems were presented by Wu [25]. Recently Lai and Wu [26]
have investigated the evaluation of the fuzzy completion times in the fuzzy flow shop
scheduling problems using the virus-evolutionary genetic algorithms.
In this paper, a permutation flow shop system with limited intermediate buffers and
deteriorating jobs is investigated under fuzzy environment. Here, a mixed integer nonlinear
program is formulated to minimize the weighted sum of fuzzy earliness and tardiness
penalties. This problem is in accordance with the concept of just-in-time (JIT) production.
The earliness penalty is used for jobs which are produced earlier than their due dates and may
cause inventory holding cost. In addition, the tardiness penalty is considered for missing a
job’s due date resulting dissatisfaction and lost sale. In this study, a hybrid meta-heuristic
approach based on imperialist competitive algorithm (ICA) and genetic algorithm (GA) is
proposed to find efficient solutions in reasonable computational times.

The paper is organized as follows. Section 2 gives brief basics about fuzzy set theory. In
section 3, the proposed problem is described and modeled. Section 4 introduces the proposed
solution approaches. Section 5 presents the experimental design which compares the achieved
results of meta-heuristic approaches. Finally, Section 6 consists of conclusions and future
work.

2 Fuzzy set theory

In this section, some related concepts of fuzzy set theory, which are necessary for the
considered problem, are reviewed. Subsections 2.1 and 2.2 are assigned to the definition of
fuzzy numbers and fuzzy earliness / tardiness calculations, respectively.

2.1 Fuzzy numbers

The fuzzy subset of real numbers R is defined by a function : [0,1],a R  called
membership function of. The level  set of a , denoted by a , is defined by

{ : }aa x R     for all (0,1]  . It is seen that if is a fuzzy number, then the set of is a
closed, bounded and convex subset of R, namely a closed interval in R. In this case, it is
denoted by [,].L Ua a a    

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 3 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

28 M. Jannatipour, et al., / IJAOR Vol. 4, No. 3, 25-48, Summer 2014 (Serial #13)

Proposition 2.1.1. Leta and b be two fuzzy numbers. Then a  b and a  b are also fuzzy
numbers:
() [,]l l u ua b a b a b            (1)

() [,]l u u la b a b a b            (2)

Furthermore,

(max{ , }) [max{ , }, max{ , }]l l u ua b a b a b         (3)

In the application of fuzzy theory, the triangular and trapezoidal fuzzy numbers are utilized,
frequently. In this study, processing times and due dates are considered as triangular and
trapezoidal fuzzy numbers, respectively.
The triangular fuzzy number a is denoted by (, ,)l ua a a a and its membership function is
defined by:

() / ()
() () / ()

0

l l l

u u u
a

x a a a ifa x a
r a x a a ifa x a

otherwise


    
    



 (4)

The level  set of a is: [(1) , (1)]l ua a a a a         That is,

(1) (1) .l l u ua a a and a a a          

It can be shown that a b  calculated through Eq. (5) is also a triangular fuzzy
number. (, ,) (, ,) (, ,)l u l u l l u ua b a a a b b b a b a b a b       (5)

The trapezoidal fuzzy number is also introduced to describe the fuzzy due dates. For a

trapezoidal fuzzy number denoted as 1 2(, , ,)l ua a a a a , the membership function is given by:

1 1

1 2

2 2

() / ()
1

()
() / ()

0

l l l

a u u u

x a a a ifa x a
ifa x a

x
a x a a ifa x a

otherwise



    
   

   




 (6)

It can be seen that: 1 2(1) (1)l l u ua a a and a a a           where [,]l ua a a     .
In this study, processing times and due dates are considered as (, ,)L U

ij ij ij ijp p p p and

1 2(, , ,)L U
j j j j jd d d d d respectively.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 4 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

A Hybrid Approach for Fuzzy Just-In-Time Flow Shop Scheduling with Limited Buffers and Deteriorating Jobs 29

2.2 Fuzzy Earliness and Tardiness

From Proposition 2.1.1, the values of earliness jE and tardiness jT of each job j are fuzzy
numbers and is defined as follows:

max{0, }j j jE d C    (7)

and max{0, }.j j jT C d    (8)

Therefore, the level  closed intervals of jE and jT can be transacted by:

max{0, },L L U

j j jE d C     max{0, },U U L
j j jE d C    

 (9)

max{0, },L L U
j j jT C d     max{0, }.U U L

j j jT C d    
 (10)

As mentioned above, the proposed objective function is the weighted sum of fuzzy earliness
and tardiness penalties:

1

() ()
n

j j j j
j

f e E t T


    (11)

For minimizing this fuzzy-valued objective function, the ranking method proposed by
Fortemps and Roubens [27] is applied. In this method, for any two fuzzy numbers a andb ,
a b  if and only if () ()a b   , where ()a  is calculated through Eq. (12).

1

0

1() () .
2

L Ua a a d      (12)

Given that:

1 1

() [(), ()] [(), ()],
n n

L U L L U U
j j j j j j j j

j j
f f f e E t T e E t T        

 

          

 (13)

and substituting Eq. (13) in Eq. (12), it is seen that
1

1(()) ()
2

n

j j j
j

f e h t u 


  where:

1 1

0 0

max{0, } max{0, }L U U L
j j j j jh d C d d C d          

 (14)
 and

1 1

0 0

max{0, } max{0, } .L U U L
j j j j ju C d d C d d           (15)

The above (())f  is calculated considering the fuzzy processing times

(, ,)L U
ij ij ij ijp p p p as triangular fuzzy numbers and the fuzzy due dates

1 2(, , ,)L U
j j j j jd d d d d as trapezoidal fuzzy numbers for 1,...,j n and 1,..., .i m Therefore,

it is seen that:

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 5 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

30 M. Jannatipour, et al., / IJAOR Vol. 4, No. 3, 25-48, Summer 2014 (Serial #13)

1() (1)L L
j j jd d d     and 2() (1) .U U

j j jd d d    

Based on the triangular shape of the processing times, the fuzzy completion time of each job j
(jC) will turn out to be a triangular fuzzy number (, ,).L U

j j j jC C C C Therefore:

() (1)L L
j j jC C C     and () (1) .U U

j j jC C C     (16)

Now, regarding the graph of jC as triangle and the graph of jd as trapezoid, there will be
five cases describing their positional relations [25]. In other words, the following five cases
are supposed to be discussed in order to calculate jh and ju in Eqs. (14) and (15):

Case (I): If U L
j jC d then

1 2
1 (2).
2

L U L U
j j j j j j j j j j j je h t u e d d d d C C C        (17)

Case (II): If 1j jC d and U L
j jC d then

 2

1 2
1

()1 1(2) () .
2 2

U L
j jL U L U

j j j j j j j j j j j j j j U L
j j j j

C d
e h t u e d d d d C C C e t

C C d d


         
  

(18)

Case (III): If 1 2j j jd C d  then

2 1
1 1() ().
2 2

U L U L
j j j j j j j j j j j j j je h t u e d d C C t C C d d        

 (19)
Case (IV): If 2j jC d and L U

j jC d then
2

1 2
2

()1 1(2) () .
2 2

U L
j jL U L U

j j j j j j j j j j j j j j L U
j j j j

d C
e h t u t C C C d d d d e t

C C d d


         
  

 (20)

Case (V): If U L

j jd C then the graph of jd is completely on the left of the graph of

,jC which gives:

1 2
1 (2).
2

L U L U
j j j j j j j j j j j je h t u t C C C d d d d        (21)

For each job j, one of the above five cases (I)–(V) will be observed, and j j j je h t u can

be obtained. In this work, ICA, GA and hybrid ICA-GA methods are designed to find a near
optimal schedule.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 6 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

A Hybrid Approach for Fuzzy Just-In-Time Flow Shop Scheduling with Limited Buffers and Deteriorating Jobs 31

3 Problem Definition

In this section, the considered problem is defined, and a novel mixed integer non-linear
mathematical model is formulated. The problem can be stated as follows. n jobs from a set
j= {1,2,3,...,n} will be sequentially processed on machine 1, machine 2, and so on until last
machine m. Preemption and machine idle time is not allowed. At any time, each machine can
process at most one job and each job can be processed on at most one machine. The sequence
in which the jobs are to be processed is the same on all machines. Between each successive
pairs of machines i and i+1, there exists a limited buffer with the capacity size equal
to 0iB  . Each job must go through the buffer Bi on its route from machine i to i+1, and jobs
obey the First-In-First-Out rule in the buffer. If the buffer Bi is completely occupied, the job
has to remain on the current machine i until a free place is available in the buffer. The release
time of all jobs is zero and the setup time on each machine is included in the processing time.
The jobs are also assumed to be deteriorating. The processing times of jobs are considered as
linear function of their starting process times on machines. Processing times and due dates are
also assumed to be triangular and trapezoidal fuzzy numbers, respectively. Transportation
times between machines are negligible and processors are available with no breakdowns. The
aim is to find a sequence for processing all jobs on all machines so that the weighted sum of
fuzzy earliness and tardiness penalties is minimized.

3.1 Notations

Indices
i index for machines

j index for jobs

k index for job positions in a sequence
parameters
n number of jobs
m number of machines

j Deterioration rate of job j

je Earliness penalty of job j

jt Tardiness penalty of job j

,i jp Normal fuzzy processing time of job j on machine i

jd Fuzzy due date of job j

Bi buffer capacity between two successive machines i, i+1

Decision variables

,i kC Fuzzy completion time of kth job on machine i

jC
Final fuzzy completion time of job j

jE Fuzzy earliness of job j

jT Fuzzy tardiness of job j

jkx 1 If job j is selected for sequence position k,

 0 otherwise

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 7 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

32 M. Jannatipour, et al., / IJAOR Vol. 4, No. 3, 25-48, Summer 2014 (Serial #13)

3.2 The Mathematical Model

In this section, a Mixed Integer nonlinear Programming (MINP) mathematical model is
presented. The objective function and constraints can be formulated as follows:

1

min ()
n

j j j j
j

z e E t T


   

 (22)
s.t.

1
1

n

jk
k

x




j (23)

1

1
n

jk
j

x




k (24)

1,1 1, 1
1

(.)
n

j j
j

C p x


 

 (25)

,1 1,1 , 1
1

(().)
n

i i i j j
j

C C p x


   

2,3,...,i m (26)

1, 1, 1 1,
1

(().)
n

k k j jk
j

C C p x


   

12,3,..., 1k B  (27)

11, 1, 1 1, 2, 1
1

((max(,)).)
n

k k j k B jk
j

C C p C x  


   

1 1k B  (28)

, , 1 1, ,
1

(((max(,))(1)).)
n

i k i k i k j i j jk
j

C C C p x 


     

2,3,..., 1i m 

2,3,..., 1ik B  (29)

, , 1 1, , 1, 1
1

(max((max(,))(1) ,).)
i

n

i k i k i k j i j i k B jk
j

C C C p C x    


     

2,3,..., 1i m  (30)

1ik B 

, , 1 1, ,
1

(((max(,))(1)).)
n

m k m k m k j m j jk
j

C C C p x 


     

2,3,...,k n (31)

,
1
(.)

n

j m k jk
k

C C x


 

1,2,...,j n (32)

max(0,)j j jE d C    1,2,...,j n (33)

max(0,)j j jT C d    1,2,...,j n (34)

{0,1}jkx  1,2,...,j n 1,2,...,k n (35)

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 8 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

A Hybrid Approach for Fuzzy Just-In-Time Flow Shop Scheduling with Limited Buffers and Deteriorating Jobs 33

Eq. (22) shows the objective function which is the minimization of the weighted sum of fuzzy
earliness and tardiness penalties of all jobs. Constraint (23) ensures that each job is assigned
to exactly one sequence position and constraint (24) ensures that in each sequence position,
one and only one job is processed. Constraints (25) determine the fuzzy completion time of
the first job on machine 1. Constraints (26) illustrate the fuzzy completion time of the first job
on machine i. Constraint (27) and (28) are related to the fuzzy completion time of the kth job
on the first machine regarding the job sequence, buffer capacity and blocking possibility.
Constraint (29) and (30) give the completion time of the kth job on machine i taking into
account buffer capacity, blocking possibility and deterioration rate.

The actual fuzzy processing times of the jobs that have to wait before being processed on
a machine i will be calculated in accordance with the fuzzy starting time and the deterioration
rate. In other words, as shown in Eq. (36), the processing time of each job on each machine is
a linear function of its starting time [28]:

[,] , ,()i j i j j i jp p s    (36)

where is the fuzzy actual processing time of job j on machine i and is the fuzzy starting time
of job j on machine i.

Obviously, the longer a job has to wait for being processed, the longer is its actual
processing time. In constraints (25) to (28), disregarding the deterioration of jobs, the normal
processing times have been applied because the mentioned jobs will not wait before being
processed.

The fuzzy completion time of the kth job on the last machine is calculated in constraints
(31) considering deterioration rates. Constraint (32) determines the fuzzy completion time of
job j after all the stages of the flow shop system. For each job, constraints (33) and (34) give
the fuzzy earliness and tardiness values, respectively. Finally, constraint (35) indicates that the
variable jkx is binary.

4 Proposed algorithms

In this section, the proposed genetic, imperialist competitive and hybrid algorithms will be
introduced.

4.1 A genetic algorithm solution approach

In general, the both exact and heuristic algorithms can be used to solve scheduling problems.
Exact methods are only practical for small instances and even in that case, the computational
time tends to be very high. Therefore, researchers have focused to develop heuristics. Genetic
algorithm (GA) is a well-known meta-heuristic approach inspired by the natural evolution of
the living organisms. GA is applied to tackle both discrete and continuous optimization
problems. Generally, the input of the GA is a set of solutions called population of individuals
that will be evaluated. A fitness value is assigned to each solution (chromosome) according to
its performance. The population evolves by a set of operators until some stopping criterion is
visited. The chromosome representation and the designed genetic operators are two important
challenges in the design of GA. A detailed description of main factors for the proposed GA is
reported below.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 9 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

34 M. Jannatipour, et al., / IJAOR Vol. 4, No. 3, 25-48, Summer 2014 (Serial #13)

4.1.1 Initialization

The initial population consists of Pop_size chromosomes of solutions that each chromosome
is related to a candidate solution of the problem. The most frequently used encoding scheme
for the flow shop scheduling problem, is a simple permutation of jobs [29]. The relative order
of jobs in the permutation illustrates the processing order of jobs on all machines in the shop.
To qualify encoding scheme, the permutation of jobs is shown through random keys (RK).
Each job has a random number between 0 and 1, and these RKs show the relative order of the
jobs. In this paper, the largest RK value is firstly handled and assigned the smallest rank value
1, the second largest RK value is addressed and assigned a rank value 2, and so on. For
example, the encoded solution {0.47, 0.83, 0.51, 0.12, 0.26} represents the permutation {2, 3,
1, 5, 4} (Fig 1).

Fig. 1 Jobs permutation generation

4.1.2 Evaluation

The fitness value of each chromosome is evaluated by Eq. (37).

1

() 1/ (1 ()) 1,..., _
n

j j j j
j

f k e h t u k pop size


    (37)

where, ()f k is the fitness value of th chromosome in a population and
1

()
n

j j j j
j

e h t u


 is

the defuzzified objective function of the problem.

4.1.3 Parent selection strategy

The parent selection strategy means how to choose chromosomes in the current population
that will create off-spring for the next generation [30]. The most common method for the
selection mechanism is the “roulette wheel” sampling. In this method each chromosome is
selected based on probability proportionated to its fitness value (Eq. 38). Solutions with
higher fitness value have more chance to be in the pool of parents for creation of off-springs.
A chromosome can be selected as a parent one more time.

_

1
() () / (()) 1,..., _

pop size

j
PV k f k f j k pop size



  (38)

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 10 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

A Hybrid Approach for Fuzzy Just-In-Time Flow Shop Scheduling with Limited Buffers and Deteriorating Jobs 35

4.1.4 Design of genetic operators
4.1.4.1 Crossover operator

In this paper, uniform crossover namely position-based operator [31], is applied. The steps of
this method are introduced as follows:
1. Randomly choose two sequences from the population as two parents.

Parent 1 3 2 5 1 4

Parent 2 4 1 3 5 2

2. Create binary string (BS) and assign a randomly generated binary (0,1) to each cell.

BS 0 1 0 0 1

3. Copy the genes from the parent 1 to the locations of the ‘‘1’’s in the binary string to the

same positions in the offspring.

Offspring 2 4

4. The genes that have already been selected from the parent 1 are deleted from the parent 2,

so that the repetition of a gene in the new offspring is avoided.

Parent 2 - 1 3 5 -

5. Complete the remaining empty gene locations with the undeleted genes that remain in the

parent by preserving their gene sequence in parent 2.

Offspring 1 2 3 5 4

4.1.4.2 Mutation operator

The main purpose of applying mutation is to maintain the diversity of the population in the
successive generations and to avoid convergence to a local optimum. In this study, a mutation
operator, called single point mutation (SPO) is used. The procedure of SPO can be defined as
follows: the RK of a randomly selected job is randomly regenerated and then, the permutation
of jobs is rewritten. An illustrative example is shown in Fig 2.

Fig. 2 Single point mutation

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 11 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

36 M. Jannatipour, et al., / IJAOR Vol. 4, No. 3, 25-48, Summer 2014 (Serial #13)

4.1.4.3 Reproduction operator

In this paper, an elitism strategy is applied as reproduction operator. In this strategy, the best
chromosomes are automatically copied to the next generation.

4.1.5 Stopping criteria

In this study, two stopping criteria are applied: (1) maximum number of elapsed generation
(Gmax) and (2) number of successive generations when the algorithm doesn’t have any
improvement. This number is considered as 0.25*Gmax .

Therefore, the algorithm runs until one of these stopping criteria is visited.
The values of the control parameters of the proposed GA are determined using Taguchi
experimental design method as follows: pop_size =70, Pc = 0.6, Pm= 0.12 and Gmax=150.

4.2 Imperialist competitive algorithm

According to the world history, imperialism is a policy for expanding the authority of a
powerful government. By acquiring territory or dominating the economic and political
systems of other countries, an imperialist try to attempt to master other feebler countries. Also
in some cases the reason of control another country was just preventing the opponent
imperialist from taking possession of it. This competition resulted in a growth of the great
empires and fall down of weaker ones [32]. Imperialist competitive algorithm, proposed by
Atashpaz-Gargari and Lucas [33] is a novel global search heuristic that uses imperialistic
competition process as a source of inspiration.

4.3 Hybrid ICA-GA

The performance of the proposed hybrid imperialist competitive algorithm- genetic algorithm
(ICA-GA) can be divided into two sections. The first section is producing an appropriate
solution. In fact, the first part is an input for the second one. The task of the second part is
improving the population into a near optimal sequence. Since ICA make more searches on
different sequences of JIT flow shop due to its high convergence rate and execution speed, it
is used as an appropriate tool for producing the appropriate and good first population for GA.
On the other hand, GA can be a good tool for improving the population due to its accuracy in
finding near global optimum solutions. The main steps of the designed hybrid algorithm are
summarized in the pseudo code shown in Fig. 3.

5 Computational results
5.1 Data Generation

To solve the presented mathematical model, and for the purpose of evaluating the
effectiveness of the proposed hybrid algorithm, a number of test problems are randomly
generated with different structures. Input data, such as number of jobs, number of machines,
processing times, due dates, deterioration rates and buffer capacities, are generated as shown
in Table 1.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 12 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

A Hybrid Approach for Fuzzy Just-In-Time Flow Shop Scheduling with Limited Buffers and Deteriorating Jobs 37

As can be seen in Table 1, the values of 2jd were generated between (1 / 2)R M 
and, where and R are two parameters calling tardiness factor and due date range. In this study,
it is considered that 0.2,0.6  and 0.6,1.6R  . These values typically cover various
problems and hence, they are appropriate for the earliness/tardiness objective function
[34]. M is the maximum completion times of all jobs that are obtained from Johnson’s order.

 Generate initial population (initial countries)
 Evaluate power of each country
 Create initial empires
 (Consider some of countries with best powers as imperialists and remaining them as colonies)

 While (number of empires >1)
 Perform assimilation approach
 Perform revolution
 Calculate power of each country

 If (power of colony>power of imperialist)
 Swap colony and its imperialist
 End if

 Calculate power of each empire
 (Summation of imperialist power and proportion of its colonies)
 Select the weakest colony of the weakest empire
 Run imperialist competition strategy

 If (empire loses all of its colonies)
 Eliminate empire
 End If

 End while

 Select a number of best solutions (countries) and consider them as chromosomes for GA

 Generate initial population of GA (Best selected solutions of ICA + new randomly generated
chromosomes)
 Calculate fitness function of each chromosome

 For (number of elapsed generation (g) =1 to Gmax)
 Run genetic operators (crossover, mutation and elitism)

 If (in 0.25* successive generations, the algorithm doesn’t have any
improvement)
 Break For
 End If

 End For

Fig.3 The main steps of the designed hybrid algorithm

To produce trapezoidal fuzzy numbers jd , and triangular fuzzy numbers ijp the following
methods are used:

2 2 2 2(' , , ,),j j j j j j j j jd d w w d w d d w     (, ,).ij ij ij ij ij ijp p w p p w  

STEP.1
Implementation

 of
ICA

STEP.3
Implementation

 of
GA

STEP.2
Selection

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 13 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

38 M. Jannatipour, et al., / IJAOR Vol. 4, No. 3, 25-48, Summer 2014 (Serial #13)

The values of controllable parameters for each type of numerical instance are presented in
Table 2. Table 3 shows an example in small size, for a given problem of type a with five jobs
and three machines. The computational results of the given test problem is shown in Table 4.
This table contains fuzzy completion time (), sum of the fuzzy earliness and tardiness and the
assigned position to each job (optimal jobs sequence) and finally, the obtained optimal value
of objective function. As can be seen in Table 4, the optimal sequence of the given problem is
(3, 5, 1, 4, 2) and the optimal value of objective function is 25.0738.

Table 1 Information for the data generation

Parameter Values
No. of jobs (n) 4, 5, 6, 8, 10, 20, 30, 50,80

No. of machines (m) 3, 4, 5, 10, 15
Processing time (ijp) U[10,100]

Due date () U[(1 / 2)R M  , (1 / 2)R M ]
Tardiness factor () 0.2, 0.6

due date range (R) 0.6, 1.6
, ' ,j j ijw w w U[1, 5]

deterioration rate () U[0, 0.01]
earliness and tardiness

penalties () U[0, 0.1]

Table 2 The values of controllable parameters for each type of numerical instance.

Type Τ R Range of 2jd

a 0.2 0.6 [0.5M, 1.1M]
b 0.2 1.6 [0, 1.6M]
c 0.6 0.6 [0.1M, 0.7M]
d 0.6 1.6 [0, 1.2M]

Table 3 sample problem data.

jt je j jd 3, jp 2, jp 1, jp Job

0.02173
6

0.05790
7

0.0026
24

(277.11,283.06,289.01,29
7.96)

(53.26,59.22,62.
18)

(33.31,35.06,39.
82)

(16.84,18.78,19.
72)

1

0.09428 0.09511
2

0.0013
51

(461.40,469.31,471.42,47
7.11)

(81.10,86.42,91.
74)

(12.55,13.21,14.
87)

(65.57,69.02,78.
47)

2

0.07465
8

0.03340
9

0.0085
52

(348.15,355.38,364.61,37
2.84)

(36.61,38.54,42.
47)

(68.91,72.53,73.
16)

(81.91,84.11,88.
32)

3

0.00397
7

0.00478
3

0.0037
51

(303.40,311.31,318.22,
327.13)

(61.51,68.96,72.
41)

(68.61,71.17,75.
73)

(32.10,34.84,36.
58)

4

0.06803
7

0.05695
4

0.0028
59

(516.06,524.34,532.62,54
1.90)

(18.35,22.48,23.
60)

(56.29,59.25,64.
21)

(90.52,96.34,10
1.15)

5

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 14 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

A Hybrid Approach for Fuzzy Just-In-Time Flow Shop Scheduling with Limited Buffers and Deteriorating Jobs 39

Table 4 Results of the given problem.

1jkx  0.5*()j j j je h t u

Positional relation jC Job

13x 2.1878 V (317.07,335.85,359.67) 1

25x 5.6487 II (477.11,505.36,547.72) 2

31x 10.9454 I (187.43,195.18,207.95) 3

44x 0.4678 I (395.48,418.38,451.37) 4

52x 5.8242 I (248.22,263.38,280.55) 5
 25.0738 Total

5.2 Experimental Results

Three algorithms GA, ICA and hybrid ICA-GA are applied to solve the considered scheduling
problem. These algorithms have been coded using MATLAB 7.4 and executed in the Intel
Core (TM) 2 Due 2.53 GHz and 4GB RAM personal computer. Before that, a number of
random small-sized problems are solved using the optimal solution approach B&B employing
the LINGO 9.0 software, and their computational times are evaluated. The information of the
small-sized problems has been shown in Table 5.

Table 5 The information of the random type small-sized problems

Problem

Problem
information

type No. of
jobs

No. of
machines

1 4 3 c
2 4 4 b
3 5 3 c
4 5 4 d
5 6 3 a
6 6 4 a
7 8 3 b
8 8 4 c
9 10 3 d
10 10 4 a

Obtained results of these small-sized problems have been shown in Table 6. As can be seen in
Table 6, computational time of B&B method, even for small-sized problem is very long. For
instance, for a given test problem with 10 jobs, the optimal solution has not been achieved
after 12 hours. This can justify the use of meta-heuristic approaches to solve the considered
fuzzy flow shop scheduling problem.

At first, the genetic and imperialist competitive algorithms are applied to solve the
problem, separately. For small-sized problems, these two algorithms reach to the optimal
solution.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 15 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

40 M. Jannatipour, et al., / IJAOR Vol. 4, No. 3, 25-48, Summer 2014 (Serial #13)

Table 6 Computational mean times to obtain optimal solutions by B&B, GA and ICA.

Problem

B&B GA ICA

Best
solution

Optimal
solution

Mean
CPU
timea

 Best
solution

Mean
CPU
timea

 Best
solution

Mean
CPU
timea

1 8.03 8.03 00:00:03 8.03 00:00:01 8.03 00:00:01
2 25.22 25.22 00:00:12 25.22 00:00:01 25.22 00:00:02
3 14.26 14.26 00:02:11 14.26 00:00:03 14.26 00:00:03
4 139.47 139.47 00:03:28 139.47 00:00:04 139.47 00:00:04
5 159.19 159.19 00:06:54 159.19 00:00:05 159.19 00:00:06
6 181.65 181.65 01:21:31 181.65 00:00:06 181.65 00:00:06
7 231.11 231.11 04:02:21 231.11 00:00:06 231.11 00:00:07
8 70.31 70.31 08:52:37 70.31 00:00:09 70.31 00:00:08
9 373.41 - 12:00:00 233.41 00:00:12 233.41 00:00:12
10 1021.37 - 12:00:00 839.37 00:00:15 839.37 00:00:14

a Computational time (hour: minute: second).

However, the final solution of the GA is better than ICA in medium and large-sized instances,
but the convergence rate and execution speed of ICA is higher than GA. A typical
comparative performance of these two algorithms has been shown in Fig. 4. (As stated, ICA
can be stopped in 2 ways, continuing until only one empire exists and continuing until a
specified iteration is achieved.)

0 50 100 150 200 250
1.94

1.96

1.98

2

2.02

2.04

2.06

2.08

2.1 x 104

Iteration

O
bj

ec
tiv

e
Fu

nc
tio

n

ICA

GA

Fig. 4 Comparison between objective function values and convergence rates of GA and ICA for a given problem with 30
jobs and 10 machines.

The hybrid algorithm has been proposed to achieve good final solutions with reasonable

computational time especially in medium and large-sized cases. The performance of this
algorithm is compared with GA and ICA for a large number of instances with different
structures.

In order to provide a better computational experience, comparing the results with other
works is forehead. By reviewing the literature, we found a similar work, of course with
different structure, for our comparison purpose. The literature review specifies that there is no
study on scheduling problems on permutation flow shop with limited intermediate buffers,
deteriorating jobs, earliness/tardiness and fuzzy parameters simultaneously. So, we compare
the proposed ICA-GA with a particle swarm optimization with local search (PSOLS) method
proposed in [17].

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 16 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

A Hybrid Approach for Fuzzy Just-In-Time Flow Shop Scheduling with Limited Buffers and Deteriorating Jobs 41

Table 7 shows the obtained results of four algorithms for medium and large-sized
problems. Each case is solved 10 times and finally, the best solution is reported.
As shown in Table 7, the solutions obtained by the hybrid meta-heuristic approach are more
efficient than the final solutions of medium and large-sized problems reported by other
algorithms. In fact, the final solution of hybrid algorithm is better than other three algorithms.
The most common performance measure used in the literature to compare four algorithms is
the relative percentage deviation (RPD) which is computed as follows.

lg min

min

*100asol sol
RPD

sol




 (39)

where lgasol is the average solution value obtained for a given algorithm after 10 runs, and

minsol is the best solution obtained for each instance by any of the four algorithms. Tables 8
and 9, show the average RPD of four algorithms for medium and large-sized cases,
respectively.
Obviously, the hybrid algorithm provides better results than GA, ICA and PSOLS. In order to
verify the statistical validity of the results shown in Tables 8 and 9, and to determine the best
algorithm, design of experiments and analysis of variance (ANOVA) is performed and
different algorithms are considered as a factor and the response variable RPD. The means plot
and LSD intervals (at the 90% confidence level) of four algorithms are shown in Fig. 5 and
Fig. 6 for medium and large-sized instances, respectively. The results demonstrate that there
is a clear statistical difference among the performances of the algorithms.

Table 7 The quality of results obtained for GA, ICA, ICA-GA and PSOLS in medium and large-sized problems.

Instance Problem size
(job*machine) Type GA ICA ICA-GA PSO LS

 1 20*5 a 4243.8 4274.1 4243.8 4243.8
2 20*5 b 4656.6 4685.7 4652.7 4652.7
3 20*5 c 1352.5 1353.2 135٢.5 1352.5
4 20*5 d 1757.1 1769.6 1759.5 1757.1
5 20*10 a 8627.1 8678.8 8627.1 8630.3
6 20*10 b 9276.7 9305.3 9276.7 9276.7
7 20*10 c 3732.0 3770.3 3732.0 3732.0
8 20*10 d 7510.5 7556.3 7510.5 7510.5
9 20*15 a 14813.0 14870.1 14809.2 14809.2
10 20*15 b 10205.1 10283.2 10205.1 10205.1
11 20*15 c 4473.4 4533.1 4439.2 4461.8
12 20*15 d 11025.2 11088.4 11011.3 11022.4
13 30*5 a 8071.8 8129.8 8071.8 8071.8
14 30*5 b 7185.8 7238.7 7111.3 7160.0
15 30*5 c 1354.8 1416.7 1343.2 1343.2
16 30*5 d 5630.6 5687.5 5611.9 5641.7
17 30*10 a 19479.3 19588.1 19479.3 19479.3
18 30*10 b 16435.7 16506.7 16418.5 16431.7
19 30*10 c 7530.3 7588.9 7510.0 7530.3
20 30*10 d 10859.7 11178.8 10664.3 10774.7
21 30*15 a 31214.0 31311.1 31119.6 31183.4
22 30*15 b 31557.5 31617.8 31445.2 31541.1
23 30*15 c 11418.3 11516.1 11403.2 11427.5
24 30*15 d 25179.5 25331.1 24872.9 24907.5
25 50*5 a 21706.4 22109.8 21302.0 21302.0
26 50*5 b 19249.7 19355.4 19198.1 19240.6
27 50*5 c 5634.5 5876.9 5602.0 5621.6

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 17 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

42 M. Jannatipour, et al., / IJAOR Vol. 4, No. 3, 25-48, Summer 2014 (Serial #13)

Instance Problem size
(job*machine) Type GA ICA ICA-GA PSO LS

28 50*5 d 14124.0 14334.2 14009.3 14060.4
29 50*10 a 60304.2 60543.1 60243.8 60265.1
30 50*10 b 47861.5 48344.7 47544.1 47903.2
31 50*10 c 14867.7 15134.8 14654.2 14811.8
32 50*10 d 47024.1 47187.2 46654.8 46971.7
33 50*15 a 87769.1 88230.0 87545.5 87747.3
34 50*15 b 99714.9 100233 99233.4 99274.3
35 50*15 c 35218.7 35740.9 34980.6 35022.4
36 50*15 d 73967.7 74560.8 73778.5 73810.3
37 80*5 a 60068.2 60323.5 60008.4 60019.9
38 80*5 b 68438.3 69130.7 68020.1 68098.8
39 80*5 c 13450.0 13889.0 13129.8 13309.5
40 80*5 d 43608.7 44321.6 43121.9 43222.5
41 80*10 a 148917 151334 146556 146173.4
42 80*10 b 150617 153217 149870 150105.3
43 80*10 c 58565.0 59200.6 58565.0 58572.4
44 80*10 d 109663.3 111232.2 108776.2 109572.6
45 80*15 a 274895.0 277654.1 272114.3 272186.2
46 80*15 b 281266.6 287655.1 278906.9 280326.6
47 80*15 c 106896.4 107877.5 105998.0 106343.1
48 80*15 d 177444.2 180556.3 175667.3 175919.3

Table 8 Comparison between relative percentage deviation (RPD) of GA, ICA, ICA-GA and PSOLS for medium-sized
problems.

PSO LS ICA-GA ICA GA Type Problem size
(job*machine) instance

0.52 0.44 1.68 0.54 a 20*5 1
0.72 0.70 1.43 0.74 b 20*5 2
1.43 1.07 3.98 1.60 c 20*5 3
1.14 0.93 3.02 1.18 d 20*5 4
0.38 0.51 1.10 0.29 a 20*10 5
0.41 0.50 1.02 0.27 b 20*10 6
1.42 1.53 2.77 1.12 c 20*10 7
0.09 0.02 1.01 0.14 d 20*10 8
0.18 0.13 0.57 0.22 a 20*15 9
0.39 0.32 0.95 0.53 b 20*15 10
1.35 1.22 2.63 1.47 c 20*15 11
0.44 0.42 0.87 0.47 d 20*15 12
1.15 0.83 1.72 1.27 a 30*5 13
1.82 1.44 2.96 2.40 b 30*5 14
6.58 6.08 11.57 7.49 c 30*5 15
0.73 0.39 1.86 1.02 d 30*5 16
0.21 0.15 0.50 0.22 a 30*10 17
0.41 0.38 0.96 0.46 b 30*10 18
1.33 1.21 1.62 1.42 c 30*10 19
2.54 2.31 5.55 3.17 d 30*10 20
0.69 0.72 0.93 0.66 a 30*15 21
0.38 0.21 1.71 0.59 b 30*15 22
1.44 1.53 1.98 1.40 c 30*15 23
1.55 1.24 4.05 1.76 d 30*15 24
1.14 1.01 2.35 1.27 Average

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 18 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

A Hybrid Approach for Fuzzy Just-In-Time Flow Shop Scheduling with Limited Buffers and Deteriorating Jobs 43

Table 9 Comparison between relative percentage deviation (RPD) of GA, ICA, ICA-GA and PSOLS for
large-sized problems.

PSO LS ICA-GA ICA GA Type Problem size
(job*machine) instance

1.73 1.18 5.94 2.68 a 50*5 1
0.53 0.26 1.07 0.93 b 50*5 2
2.84 2.08 6.92 3.81 c 50*5 3
1.46 1.05 3.68 2.47 d 50*5 4
0.40 0.37 0.92 0.64 a 50*10 5
1.06 1.02 2.57 1.50 b 50*10 6
3.04 3.62 6.83 2.87 c 50*10 7
0.54 0.69 1.69 1.00 d 50*10 8
0.52 0.48 1.16 0.57 a 50*15 9
0.71 0.66 1.32 0.82 b 50*15 10
1.24 1.04 3.26 1.64 c 50*15 11
0.53 0.45 1.79 0.73 d 50*15 12
0.25 0.17 1.29 0.34 a 80*5 13
0.74 0.46 2.51 1.26 b 80*5 14
5.39 4.80 9.68 6.48 c 80*5 15
1.60 1.50 4.07 2.71 d 80*5 16
2.35 2.27 5.49 2.43 a 80*10 17
1.43 0.90 5.34 2.36 b 80*10 18
0.89 0.87 1.77 0.91 c 80*10 19
3.97 3.57 5.30 4.38 d 80*10 20
2.15 1.76 3.67 2.41 a 80*15 21
2.11 1.94 3.62 2.65 b 80*15 22
2.27 1.59 3.67 2.75 c 80*15 23
3.51 4.31 4.43 3.15 d 80*15 24
1.72 1.54 3.67 2.15 Average

R
PD

PSOICA-GAICAGA

3.0

2.5

2.0

1.5

1.0

90% CI for the Mean
Interval Plot of GA, ICA, ICA-GA, PSO

Fig. 5 The means plot and LSD intervals for RPD of four algorithms (medium-sized problems).

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 19 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

44 M. Jannatipour, et al., / IJAOR Vol. 4, No. 3, 25-48, Summer 2014 (Serial #13)

R
PD

PSOICA-GAICAGA

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Interval Plot of GA, ICA, ICA-GA, PSO
90% CI for the Mean

Fig. 6 The means plot and LSD intervals for RPD of four algorithms (large-sized problems).

In order to consider the effects of number of jobs on four algorithms, a two ways ANOVA is
applied. Plot of RPD for the interaction between the type of algorithm and number of jobs is
illustrated in Fig. 7. As depicted, in all cases (n=20, n=30, n=50 and n=80), the ICA-GA has
better performance than other algorithms.

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of Jobs

R
PD

ICA
GA
PSO(LS)
ICA-GA

Fig. 7 RPD for the interaction between the type of algorithm and the number of jobs.

Another two ways ANOVA test is applied to see the effect of number of machines on
performance of the four presented algorithms. The results are demonstrated in Fig. 8. In all
cases (m=5, m=10 and m=15) the ICA-GA performs better than GA, ICA and PSOLS.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 20 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

A Hybrid Approach for Fuzzy Just-In-Time Flow Shop Scheduling with Limited Buffers and Deteriorating Jobs 45

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4

Number of Machines

R
P

D

ICA
GA
PSO (LS)
ICA-GA

Fig. 8 RPD for the interaction between the type of algorithm and the number of machines.

As shown in Fig. 4 and Fig. 5 and according to the computational results the overlap between
GA, hybrid algorithm and PSOLS is considerable. Therefore, another criterion is required to
judge about the capability of algorithms. We ran 48 problem instances (each instance has been
performed in 10 replications) and the mean value of computational times is reported. The
mean time of the hybrid algorithm was 14.06 % better than the GA and 21.51% better than
PSOLS ones (see Table 10).

Table 10 Superiority of ICA-GA in computational times (S) rather than GA and PSOLS for medium and large-sized
problems

Instance Problem size
(job*machine) Type GA PSO LS ICA-GA

Improvement (%)
GA PSOLS

1 20*5 a 24.22 26.08 22.61 7.17 15.39
2 20*5 b 21.47 23.03 20.12 6.82 14.58
3 20*5 c 20.14 21.03 18.73 7.70 12.47
4 20*5 d 18.11 18.05 16.11 12.48 12.08
5 20*10 a 25.32 26.03 22.75 11.54 14.68
6 20*10 b 27.11 28.02 24.83 9.31 12.98
7 20*10 c 24.18 26.00 22.64 6.99 15.05
8 20*10 d 25.36 26.03 22.72 11.72 14.69
9 20*15 a 22.65 23.09 20.35 11.58 13.74
10 20*15 b 24.39 26.07 22.32 9.37 16.91
11 20*15 c 22.17 23.09 20.71 7.10 11.53
12 20*15 d 23.79 24.08 20.90 13.83 15.21
13 30*5 a 25.31 27.04 22.59 12.49 20.18
14 30*5 b 22.19 24.07 20.57 8.24 17.44
15 30*5 c 26.11 28.10 23.77 10.17 18.56
16 30*5 d 25.08 27.02 21.83 15.05 23.96
17 30*10 a 27.35 29.04 24.72 10.73 17.55
18 30*10 b 30.62 33.04 27.23 12.57 21.47
19 30*10 c 32.21 34.06 29.31 9.93 16.24
20 30*10 d 28.56 30.05 25.65 11.56 17.37
21 30*15 a 34.90 35.06 30.75 13.68 14.20
22 30*15 b 30.26 32.07 27.44 10.44 17.04

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 21 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

46 M. Jannatipour, et al., / IJAOR Vol. 4, No. 3, 25-48, Summer 2014 (Serial #13)

Instance Problem size
(job*machine) Type GA PSO LS ICA-GA

Improvement (%)
GA PSOLS

23 30*15 c 34.61 34.01 29.15 18.93 16.88
24 30*15 d 35.85 37.03 31.01 15.61 19.43
25 50*5 a 43.01 46.02 37.36 15.31 23.37
26 50*5 b 42.04 49.02 36.70 14.55 33.56
27 50*5 c 40.75 44.00 35.41 15.11 24.30
28 50*5 d 4513 45.07 38.41 17.53 17.36
29 50*10 a 48.37 49.10 41.14 17.69 19.46
30 50*10 b 47.91 52.03 42.85 11.94 21.56
31 50*10 c 48.52 52.02 42.15 15.25 23.57
32 50*10 d 48.08 51.06 40.10 19.90 27.34
33 50*15 a 61.10 67.05 54.58 12.11 23.03
34 50*15 b 59.00 66.03 50.67 16.60 30.50
35 50*15 c 59.93 65.08 52.46 14.37 24.19
36 50*15 d 61.77 64.02 52.36 18.11 22.42
37 80*5 a 73.23 83.07 60.44 21.24 37.52
38 80*5 b 72.89 86.03 62.83 16.07 37.00
39 80*5 c 71.24 79.09 60.44 17.95 30.94
40 80*5 d 70.17 78.04 60.50 15.98 29.00
41 80*10 a 86.54 92.04 73.71 17.42 24.88
42 80*10 b 86.09 91.06 70.31 22.46 29.53
43 80*10 c 86.43 93.06 74.21 16.48 25.41
44 80*10 d 85.12 97.08 73.75 15.50 31.73
45 80*15 a 104.41 112.06 90.81 14.99 23.41
46 80*15 b 104.34 115.05 89.30 16.84 28.83
47 80*15 c 110.15 118.05 90.98 21.18 29.86
48 80*15 d 109.17 108.10 87.27 25.19 23.97

Average 14.06 21.51

The results show that, the proposed hybrid algorithm is still much better than PSOLS and thus
is a reliable algorithm for treating such a problem.

6 Conclusions and future work

In this paper, a just-in-time flow shop scheduling problem with limited buffers and
deteriorating jobs was investigated in a fuzzy environment. For this problem, a mixed integer
non-linear program has been formulated. The aim of this model was to minimize the weighted
sum of fuzzy earliness and tardiness penalties considering a set of jobs that have non-identical
due dates. Due to NP-hardness of the problem, an efficient hybrid meta-heuristic approach
based on imperialist competitive algorithm and genetic algorithm (ICA-GA) was proposed to
solve the mathematical model. The objectives of proposing a hybrid algorithm were to
improve the solution quality and to reduce the run time. Since, the initial solution is produced
by ICA, having more rapid convergence rate, provide a better solution to be optimized by GA
in fewer replications for finding the best solution. The performance of the proposed hybrid
algorithm has been verified by a number of random numerical examples. Computational
results demonstrated the superiority of the proposed approach in the jobs sequencing as
compared with GA and ICA methods. The proposed algorithm was also compared with a
similar work in the literature, PSOLS, and provided a much better solution quality in more
reasonable time span. Future studies can focus on the other features of deterioration such as
non-linear functions. In addition, designing other meta-heuristic approaches may be devised
for the further works. Also, to improve the quality of solution in hybrid approach, local search
methods can be employed.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 22 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

A Hybrid Approach for Fuzzy Just-In-Time Flow Shop Scheduling with Limited Buffers and Deteriorating Jobs 47

References

1. Papadimitriou, C.H., Kanellakis, P.C., (1980). Flow shop scheduling with limited temporary storage, Journal

of Association Computing Machine, 27,533–549.
2. Norman, B.A., (1996). Scheduling flow shops with finite buffers and sequence dependent setup times,

Computers & Industrial Engineering, 36 (1), 163–177.
3. Khosla, I., (1995). The scheduling problem where multiple machines compete for a common local buffer,

European Journal of Operational Research, 84,330–42.
4. Nowicki, E., (1999). The permutation flow shop with buffers: a tabu search approach, European Journal of

Operational Research, 116,205–219.
5. Wang, L., Zhang, L., Zheng, D.Z., (2006). An effective hybrid genetic algorithm for flow shop scheduling

with limited buffers, Computers & Operations Research, 33, 2960–2971.
6. Liu, B., Wang, L., Jin, Y.H., (2008). An effective hybrid PSO-based algorithm for flow shop scheduling with

limited buffers, Computers & Operations Research, 35,2791–2806.
7. Ke Pan, Q., Wang, L., Gao, L., (2011). A chaotic harmony search algorithm for the flow shop scheduling

problem with limited buffers, Applied Soft Computing, 11,5270–5280.
8. Ke Pan Q., Wang, L., Gao, L., Li, W.D., (2011) An effective hybrid discrete differential evolution algorithm

for the flow shop scheduling with intermediate buffers, Information Sciences, 181, 668–685.
9. Gupta, J.N.D., Gupta, S.K., (1988). Single facility scheduling with nonlinear processing times, Computers &

Industrial Engineering, 14, 387–393.
10. Mosheiov, G., (2000). Complexity analysis of job-shop scheduling with deteriorating jobs, Discrete Applied

Mathematics, 117, 195–209.
11. Wang, J.B., Ng, D.C.T., Cheng, T.C.E., Liu, L.L., (2006). Minimizing total completion time in a two-

machine flow shop with deteriorating jobs, Applied Mathematics and Computation, 180, 185–193.
12. Wang, J.B., Xia, Z.Q., (2006). Flow shop scheduling with deteriorating jobs under dominating machines,

Omega, 34, 327–336.
13. Shiau, Y.R., Lee, W.C., Wu, C.C., Chang, C.M., (2007). Two-machine flow shop scheduling to minimize

mean flow time under simple linear deterioration, International Journal of Advanced Manufactured
Technology, 34,774–782.

14. Lee, W.C., Wu, C.C., Wen, C.C., Chung, Y.H., (2008). A two-machine flow shop makespan scheduling
problem with deteriorating jobs, Computers & Industrial Engineering, 54,737–49.

15. Ng, C.T., Wang, J.B., Cheng, T.C.E., Liu, L.L., (2010). A branch-and-bound algorithm for solving a two-
machine flow shop problem with deteriorating jobs, Computers & Operations Research, 37,83–90.

16. Yang, S.H., Wang, J.B., (2011). Minimizing total weighted completion time in a two-machine flow shop
scheduling under simple linear deterioration, Applied Mathematics and Computation, 217,4819–4826.

17. Bank, M., Fatemi-Ghomi S.M.T., Jolai,F., Behnamian, J., (2012). Application of particle swarm optimization
and simulated annealing algorithms in flow shop scheduling problem under linear deterioration, Advances in
Engineering Software, 47, 1–6.

18. Bank, M., Fatemi-Ghomi, S.M.T., Jolai, F., Behnamian, J., (2012). Two-machine flow shop total tardiness
scheduling problem with deteriorating jobs, Applied Mathematical Modelling, 36(11), 5418–5426.

19. Balin, S., (2011). Parallel machine scheduling with fuzzy processing times using a robust genetic algorithm
and simulation, Information Sciences, 181,3551–3569.

20. Anglani, A., Grieco, A., Guerriero, E., Musmanno, R., (2005). Robust scheduling of parallel machines with
sequence-dependent setup costs, European Journal of Operational Research, 161,704–720.

21. Balasubramanian, J., Grossmann, I.E., (2003). Scheduling optimization under uncertainty – an alternative
approach, Computers and Chemical Engineering,27, 469–490.

22. Slowinski, R, Hapke, M., (2000). Scheduling Under Fuzziness, Physica-Verlag Editions, New York.
23. Mok, P.Y., Kwong, C.K., Wong, W.K., (2007). Optimization of fault-tolerant fabric-cutting schedules using

genetic algorithms and fuzzy set theory, European Journal of Operations Research,177, 1876–1893.
24. Zadeh, L. A., (1965). Fuzzy sets. Information and Control, 8, 338–353.
25. Wu, H.C., (2010). Solving the fuzzy earliness and tardiness in scheduling problems by using genetic

algorithms, Expert Systems with Applications, 37, 4860–4866.
26. Lai, P.J., Wu, H.C., (2011). Evaluate the fuzzy completion times in the fuzzy flow shop scheduling problems

using the virus-evolutionary genetic algorithms, Applied Soft Computing, 11, 4540–4550.
27. Fortemps, P., Roubens, M., (1996). Ranking and defuzzification methods based on area compensation. Fuzzy

Sets and Systems, 82, 319–330.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

 23 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html

48 M. Jannatipour, et al., / IJAOR Vol. 4, No. 3, 25-48, Summer 2014 (Serial #13)

28. Kononov, A., Gawiejnowicz, S., (2001). NP-hard cases in scheduling deteriorating jobs on dedicated
machines. Journal of the Operational Research Society, 52 (6), 708–717.

29. Ruiz, R., Stützle, T., (2008). An iterated greedy heuristic for the sequence dependent setup times flow shop
problem with makespan and weighted tardiness objectives, European Journal of Operational Research,
187(3),1143–59.

30. Tavakkoli-Moghaddam, R., Taheri, F., Bazzazi, M., Izadi, M., Sassani, F., (2009). Design of a genetic
algorithm for bi-objective unrelated parallel machines scheduling with sequence-dependent setup times and
precedence constraints, Computers & Operations Research, 36, 3224 – 3230.

31. Lin, S.W., Ying, K.C., Lee, Z.J., (2009). Meta-heuristics for scheduling a non-permutation flow line
manufacturing cell with sequence dependent family setup times, Computers & Operations Research, 36(4),
1110–1121.

32. Behnamian, J &Zandieh, M., (2011). A discrete colonial competitive algorithm for hybrid flow shop
scheduling to minimize earliness and quadratic tardiness penalties, Expert Systems with Applications, 38,
14490–14498.

33. AtashpazGargari, E., & Lucas, C., (2007). Imperialist competitive algorithm: An algorithm for optimization
inspired by imperialistic competition. IEEE Congresson Evolutionary Computation, Singapore, 4661–4667.

34. Moslehi, G., Mirzaee, M., Vasei, M., Modarres, M., Azaron, A., (2009). Two-machine flow shop scheduling
to minimize the sum of maximum earliness and tardiness, International Journal of Production Economics,
122,763–773.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
12

]

Powered by TCPDF (www.tcpdf.org)

 24 / 24

http://ijorlu.liau.ac.ir/article-1-421-en.html
http://www.tcpdf.org

