
International Journal of Applied Operational Research
Vol. 5, No. 2, pp. 49-60, Spring 2015

Journal homepage: ijorlu.liau.ac.ir

A Mathematical Programming Model and Genetic Algorithm for
a Multi-Product Single Machine Scheduling Problem with
Rework Processes

R. Ramezanian*

Received: 22 September 2014 ; Accepted: 12 February 2015

Abstract In this paper, a multi-product single machine scheduling problem with the
possibility of producing defected jobs, is considered. We concern rework in the scheduling
environment and propose a mixed-integer programming (MIP) model for the problem. Based
on the philosophy of just-in-time production, minimization of the sum of earliness and
tardiness costs is taken into account as the objective function. It is possible to obtain optimal
solutions for small-sized problems using the MIP model by operation research solvers. Due to
the complexity of the problem, exact algorithms are inefficient for medium and large-sized
problems. For large-sized problems, an adapted genetic algorithm (GA) is used to solve them.
The implemented GA is compared to the optimal solutions generated by an optimization
solver, and to the solutions generated by dispatching rules procedure. Computational
experiments are performed to illustrate the efficiency of the adapted GA algorithm.

Keywords: Single machine scheduling, Rework process, Mathematical programming,
Genetic algorithm.

1 Introduction

Scheduling problem is one of the important issues affecting the productivity of production
systems. This problem deals with the determination of optimum sequence of manufacturing
jobs with respect to different sequencing patterns. In traditional scheduling problems, it is
assumed that the jobs are manufactured without any defects in the production stages. But, in
many real-world production environments, it is reasonable to assume some of the items can
be defective due to non-perfect technology, damaged machines, an unsteady production
environment, an unpredictable condition or human mistakes. Thus, an entire production
process includes two stages that we call work and rework. Rework activities are defined as all
of the activities required to transform items that have not been manufactured according to
predefined standard qualifications [1]. In order to improve and regain defective jobs, they are
putted into recovery processes. In this paper, it is assumed that the number of recovery
processes is finite.

* Corresponding Author. ()

E-mail: Ramezanian@kntu.ac.ir (R. Ramezanian)

R. Ramezanian

Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
31

]

 1 / 12

http://ijorlu.liau.ac.ir/article-1-449-en.html

50 R. Ramezanian / IJAOR Vol. 5, No. 2, 49-60, Spring 2015 (Serial #16)

Rework is an important issue in many process industries such as semiconductor, glass
and steel manufacturing [1]. Flapper et al. [1] focused on planning and control of rework
activities in the process industries and presented a comprehensive survey of the related issue.
Flapper and Jensen [2] and Inderfurth and Teunter [3] integrated rework and production
processes to challenge planning and control problems, especially if both processes are using
the same equipment.

A lot of researches have investigated the effect of rework on manufacturing processes.
Most studies in this area are relevant to determine the lot size to obtain the economic batch
quantity for products in the production environments [4-7]. Teunter and Flapper [4] handled
the problem which determines the optimal batch sizes to maximize an average profit in a
manufacturing system with single stage single product. In this production system rework
process starts when a fixed number of rework products is gathered. Inderfurth et al. [6, 7]
considered scheduling of work and rework processes on a single facility in which the same
products are produced in batches. The problem is to find batch sizes such that the demands for
the items are satisfied and total cost is minimized. They proposed polynomial time algorithms
based on dynamic programming to solve this problem.

Recently, researches on rework policies that are combined with dispatching rules have
increased in number. Kuhl and Laubisch [8] determined a dispatching rule and a rework
strategy as significant factors which affect productivity in semiconductor manufacturing.
They looked for the best combination among five dispatching rules and three rework
strategies using simulation. Sha et al. [9] studied the finding of a dispatching rule for
integrating the rework strategies in the photolithography area of wafer fabrication. They
proposed a dispatching rule (Rw-DR) that determines both original lots and rework lots. Mean
flow time, on-time delivery, mean tardiness, work in process, and mean flow time of rework
lots were used as different performance indicators for the results of proposed approach. Shin
and kang [10] focused on the problem of scheduling jobs on parallel machines considering
rework probabilities, due-dates and setup times. They proposed a greedy rework probability
with due-dates (GRPD) algorithm focusing on the rework processes to solve the problem. The
performance of proposed dispatching rule is measured by six indicators. Kan and shin [11]
considered parallel machines scheduling problem with rework probabilities, due-dates, and
setup times. They developed two heuristic approaches based on a dispatching algorithm
named minimum rework probabilities with due-dates (MRPD) and problem-space-based
search (PSBS) method. In order to evaluate the effectiveness of the algorithms, six
performance indicators including total tardiness, maximum lateness, mean flow-time, mean
lateness, the number of tardy jobs, and the number of reworks were used.

Some researchers considered the case in which reworkable jobs have to undergo some
deterioration processes while they wait to be recovered. Deterioration results in an
incensement in processing time as well as in processing cost for reworking the defective
items. Thus, planning and control activities can be complicated considerably [1, 12-14].
Tayebi Araghi et al. [15] studied flexible job-shop scheduling with sequence-dependent set-
ups, learning effect and deterioration in jobs. They implemented hybrid meta-heuristic
algorithm based on genetic algorithm and the variable neighborhood search to solve the
problem. Yin et al. [16] investigated a real-life scheduling situations in which the jobs
deteriorate at a certain rate while waiting to be processed. They considered the actual time for
processing a job depends not only on the starting time of the job but also on its scheduled
position. Meta-heuristic algorithms including have been proposed for solving the machine
scheduling problem [15,17-20]. Ramezanian and Saidi-Mehrabad [21] studied a multi-product
unrelated parallel machines scheduling problem with the possibility of producing imperfect

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
31

]

 2 / 12

http://ijorlu.liau.ac.ir/article-1-449-en.html

A Mathematical Programming Model and Genetic Algorithm for a Multi-Product Single Machine Scheduling … 51

jobs. They presented a MIP model to formulate the problem and developed some heuristics
focusing on the rework processes to solve the problem.

The scheduling environments dealt with in this paper can be briefly summarized as
follows. There are a number of jobs to be processed on single machine considering defective
items, rework probabilities, due-dates, earliness and tardiness costs. When a job finishes, it is
tested as to whether the job will satisfy the preset qualification or not. If a job failed at the
test, the job should reenter the work center for rework process until it passes the test. In this
paper, it is assumed that the number of recovery processes is finite. Also, it is assumed that
rework probability for each job on the machine can be estimated through historical data
acquisition. The problem configuration is illustrated in Fig. 1.

Work center with
rework process

Work center with
rework process

Work and rework
operations

Work and rework
operations

Test center

Job 1

Job 2

Job n

Reworkable defective
products flow

Storage
Storage

Fig. 1 Single machine scheduling with rework processes configuration

In this paper, a multi-product single machine scheduling problem is considered. We assume
that defective items can be produced in any production run. We propose a mixed-integer
programming model for this problem.

The rest of the paper is organized as follows: Section 2 describes mixed integer
programming formulation of the problem. In the Section 3, we present implemented genetic
algorithm to solve our proposed model. Section 4 presents the acquired computational results
and, finally, Section 5 provides conclusions and future research suggestions.

2 Mathematical formulation

In this section, a mathematical formulation model to schedule work and rework operations on
single machine scheduling environment is presented. The assumptions, parameters and
decision variables used throughout the paper are detailed as the following.

General assumptions:

 There is only one machine.
 A job has some operations which the first one is main process and the others are

rework processes that are probabilistic.
 Setup times between jobs are negligible or included in the processing times (sequence-

independent setup times).
 Machine is available at all times.
 All jobs are available for processing at time zero.
 Machine cannot process two jobs at the same time.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
31

]

 3 / 12

http://ijorlu.liau.ac.ir/article-1-449-en.html

52 R. Ramezanian / IJAOR Vol. 5, No. 2, 49-60, Spring 2015 (Serial #16)

 Each job is processed on at most one machine at a time.
 No preemption of jobs is allowed (once the processing of a job on a machine has

started, it cannot be interrupted on that machine).
 There is no precedence constraint among the jobs.
 No more than one operation of the same job can be executed at a time.
 Any breakdowns and scheduled maintenance are not allowed.
 The processing times are independent of the sequence and are given.

Parameters:

n: Number of jobs
i: Job index, i = 1,…,n
j: Process index, j=1,…, li (j=1: main process; j=2,…,li: rework process) ܭ = ∑ ݈

ୀଵ

pij: Defective probability of jth operation for job i (= 0). It is assume that after (li-1) recovery
process (rework) the piece will have good quality.

ti: Processing time of main process for job i
αj: Decreasing coefficient of processing time in rework process j (0≤αj ≤ 1)
tij: Processing time of jth operation for job i ti1=ti , tij=ti(j-1)(1- αj)
Ei: Earliness of job i Ei= max {di - qi , 0}
Ti: Tardiness of job i Ti= max {qi - di , 0}
di: Due date of job i
Hi: Holding cost of job i per time unit
βi: Shortage cost of job i per time unit

Decision variables:

qi : Completion time of job i
Cij: Completion time of jth operation for job i
xijk: Binary variable taking value 1 if jth operation for job i on machine is processed in kth order

and 0 otherwise.

Objective function:
Due to the philosophy of just-in-time production, both earliness and tardiness penalties are
used in objective functions in the model. Considering both of tardiness and earliness penalties
is in order to satisfy the requests of real world production environments. The earliness cost
can represent the inventory cost for early finished stocks, and the tardiness cost can represent
the penalty cost for the late delivery.
To determine the expected value of completion time for jth operation of job i (Cij), the
equation (1) is used:

(1)
11 1

'1 '1 ' ' ' ' '
2 ' 1 ' 1 ' 1 2 ' 1 ' 1

() (() ()) ; ,
il jK n k n k

ij i i k i j i jk ij ijk ij
k i k i j k j

E C t x t x p x t i j

The expected value of completion time for job i can be computed based on Bayes' theorem, as
equation (2):

(2)
1 1 1 2 2 1 2

1 1

1 1 '
21 ' 1

() () (1) ()[(1)] ...

() (1)() (1) (1)()
i i

i i i

i i i i i i i i

l l j

il il ij i i ij ij ijil
jj j

E q E C Completed at O p E C Completed at O p p

E C Completed at O p p C p C p p

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
31

]

 4 / 12

http://ijorlu.liau.ac.ir/article-1-449-en.html

A Mathematical Programming Model and Genetic Algorithm for a Multi-Product Single Machine Scheduling … 53

Eventually, our proposed MIP model can be stated as follow:

(3)

n

i iiii TEHzMin
1

)(
 s.t.

(4) idTEq iiii ;

(5)
11 1

'1 '1 ' ' ' ' ' '
2 ' 1 ' 1 ' 1 2 ' 1 ' 1

(() ()) ; ,
il jK n k n k

ij i i k i j i jk i j ijk ij
k i k i j k j

C t x t x p x t i j

(6)
1

1 1 '
2 ' 1

(1) (1)();
il j

i i i ij ij ij
j j

q C p C p p i

(7) jix
K

k
ijk ,;1

1

(8) kx
n

i

l

j
ijk

i

;1
1 1

(9) i

K

k
kji

K

k
ijk ljixx ,...,2,;

1
)1(

1

(10) Klljixx i

K

lk
ijk

l

k
kji ,...,2;,...,2;;

1
)1(

(11) iqi ;0
(12) 0, ,ijC i j

 (13) kjixijk ,,;}1,0{

The objective function (3) minimizes total earliness and tardiness costs. The constraint set (4)
determines earliness and tardiness of each job. The constraint set (5) determines the expected
value of completing time of each operation for each job. The constraint set (6) determines the
expected value of completing time for each job. The constraint set (7) insures that each
operation for each job is assigned to only one position (priority) in the operation sequence and
the constraint set (8) certifies that each sequence position is filled with only one operation of a
job. The constraint set (9) insures that each operation of a job can be started after previous
operation of the same job is completed. The constraint set (10) guarantees that position
(priority) of each operation of a job is greater than the position (priority) of previous operation
of the same job. (11) to (13) are logical constraints.

3 The genetic algorithm

Genetic algorithms (GA) are a particular class of evolutionary algorithms (EA) that use
techniques inspired by evolutionary biology such as inheritance, crossover, mutation, and
selection. Gas are used to obtain good-quality solution for constrained optimization and
combinatorial optimization problems. Following is the presented genetic algorithm.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
31

]

 5 / 12

http://ijorlu.liau.ac.ir/article-1-449-en.html

54 R. Ramezanian / IJAOR Vol. 5, No. 2, 49-60, Spring 2015 (Serial #16)

3.1. Schematic structure of genes

In this paper, each gene is an operation and the chromosome is operation sequence vector
(Solution). For scheduling problem, Gen et al. [22] proposed an operation sequences
representation: they name all operations for a job with the same symbol and then interpret
them according to the order of occurrence in the sequence of a given chromosome. The ith job
appears in the operation sequence vector (v) exactly li times to represent its li ordered
operations.

Imagine a single machine shop scheduling with rework problem with three jobs, where
each job requires four operations. The first operation for each job is main process and other
operations are rework processes that are probabilistic. The operation sequence for this
example which is represented in Fig. 2 can be translated into a list of ordered operations
below:

341424133332123123221121 OOOOOOOOOOOO
Priority (k) 1 2 3 4 5 6 7 8 9 10 11 12

Operation Sequence: v(k) 2 1 2 2 3 1 3 3 1 2 1 3

Fig. 2 Illustration of the operation sequence vector

The main advantage of the vector Gen et al.’s [22] representation is that each possible
chromosome always represents a feasible solution candidate.

3.2 Initialization

To generate the initial population, random sequence generation is used. Thus, the diversity of
the initial population can be retained.

3.3 Selection

During each successive generation, a proportion of the existing population is selected to breed
offspring. The selection procedure provides the opportunity to deliver the genes of a good
solution to next generation. In the literature, there are various selection operators available
that can be used to select the parents. In this study, the tournament selection is used.

3.4 The genetic operators
3.4.1 Crossover

Crossover operator recombines two chromosomes to generate a number of children. Offspring
of crossover should represent solutions that combine substructures of their parental solutions.
Compared to other meta-heuristic methods, such as: tabu search (TS), simulated annealing
(SA), ant colony optimization (ACO), crossover may be the most distinct operation of GAs,
making heritability especially critical [23].

The enhanced order crossover expanded from the classical order crossover [24] works as
follows:

Step1. Randomly choose two chromosomes, named parent 1 and parent 2:

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
31

]

 6 / 12

http://ijorlu.liau.ac.ir/article-1-449-en.html

A Mathematical Programming Model and Genetic Algorithm for a Multi-Product Single Machine Scheduling … 55

Step 1.1. Two chromosomes are selected randomly, then the chromosome with lower
fitness value is chosen and named parent 1.
Step 1.2. Repeat Step 1.1, then name the chromosome with lower fitness function
parent 2.

Step 2. Randomly select a subsection of operation sequence from parent 1.
Step 3. Produce a proto-child by copying the substring of operation sequence into the
corresponding positions.
Step 4. Starting with the first position of parent 2, delete the operations which are in the
substring from the second parent. The resulted sequence of operations contains the
operations that the proto-child needs.
Step 5. Put the remaining operations into the empty positions of the proto-child from left
to right according to the order of the sequence in the second parent.

The implemented crossover procedure is illustrated in Fig. 3.

Parent 1 2 1 2 2 3 1 3 3 1 2 1 3

Offspring 1 2 2 3 3 1 3 3 1 2 2 1

Parent 2 3 1 2 3 1 1 2 3 2 3 2 1

Fig. 3 Illustration of the enhance order crossover

3.4.2 Mutation

Swap mutation is used to mutate the individuals and its mechanism works as follows:

Step 1. Randomly choose one chromosome.
Step 2. Randomly choose two priorities from selected chromosome in step 1.
Step 3. Replace selected operations with each other.

The used mutation procedure is illustrated in Fig. 4.

Before 2 1 2 2 3 1 3 3 1 2 1 3

After 2 1 2 3 3 1 3 2 1 2 1 3
Fig. 4 Illustration of swap mutation

3.5 Fitness Function

The fitness function is the same as the objective function which defined in Section 2. In the
proposed genetic algorithm the lower fitness function is desired.

3.6 Stopping condition

The GA continues to process the above procedure until the termination condition is met. The
search process terminates if the number of iterations is greater than maximum number of
generations, a predetermined constant set by user.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
31

]

 7 / 12

http://ijorlu.liau.ac.ir/article-1-449-en.html

56 R. Ramezanian / IJAOR Vol. 5, No. 2, 49-60, Spring 2015 (Serial #16)

4 Computational results

In this section, we provide an experimental design to compare the results of exact, heuristic
and meta-heuristic algorithms. A set of experiments are conducted for cases in which the
number of jobs ranges from 2 to 100 and the number of operations for the single machine
ranges from 2 to 5. For each configuration, the algorithm was run with randomly assigned
processing times, due dates, inventory costs, shortage costs and rework probabilities. Each
data set was run 5 times and the best trial is taken as the objective value obtained.

For each problem, the job processing times, due dates, inventory costs and shortage costs
are uniform [10, 100], [500, 2500], [5, 25] and [5, 25], respectively. Defective probability for
the processing of jobs on the machine is a random real number generated from [0.2, 0.4].
Decreasing rate of recovery processing time is set to be 0.3.

The GA and heuristic methods are coded in MATLAB R2007(b) and all tests are solved
on a PC with an Intel Core Duo (2GHz) CPU and 1GB RAM. For each run, the number of
generations is set as 100, the population number, crossover rate and mutation rate in each
generation are 100, 0.9 and 0.1.

For small-sized problems, the performances of GA are compared with optimal solutions
and the solutions generated by random sequence (Random), modified shortest processing time
(M-SPT) and modified early due date (M-EDD) dispatching rules. Table 1 shows detailed
numbers of average objective function (OF) and CPU time. For problems 1 and 2 from Table
1, the optimal value is obtained by Lingo optimization solver and GA. For problems 3-7, the
objective function is obtained by Lingo after one hour is recorded. For these problems, the
optimal solution could not be found within an hour. As shown in Table 1, the objective value
obtained by the implemented GA is lower than the results of Lingo and dispatching rules.
Table 2 shows the paired T-test for comparison of exact solution obtained by Lingo and GA.
This table shows that there is no statistically difference between exact solutions and GA
results when confidence level is set at 0.95 (with p-value = 0.08).

Table 1 Comparison of all small-sized problems

Prob. n l
Lingo Random M-SPT M-EDD Adapted GA

FF Time(s) FF Time(s) FF Time(s) FF Time(s) FF Time(s)

1 2 2 679.14 <1 1712.12 0.011 1712.12 0.011 1700.93 0.011 679.14 0.178
2 3 2 2135.88 13 3986.59 0.012 4113.32 0.012 3986.59 0.012 2135.88 0.261

3 3 3 570.51 1 hour 4164.23 0.013 2946.81 0.012 3100.18 0.013 498.90 0.298
4 4 2 2052.40 1 hour 3982.05 0.012 5470.06 0.012 5415.26 0.012 1576.83 0.294

5 4 3 1599.85 1 hour 3818.85 0.012 3364.71 0.012 3364.71 0.013 1572.28 0.416
6 5 2 909.58 1 hour 5614.56 0.013 7860.24 0.012 7484.26 0.013 623.83 0.362

7 5 3 3856.67 1 hour 10834.86 0.013 10491.42 0.012 13967.92 0.013 3727.21 0.524

Table 2 Paired T-Test for comparison of exact solution and GA

 N Mean StDev SE Mean

Exact solution 7 1686.29 1148.68 434.16
GA 7 1544.87 1140.58 431.1
Difference 7 141.423 178.169 67.342
95% CI for mean difference: (-23.356, 306.202)
T-Value = 2.10 P-Value = 0.08

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
31

]

 8 / 12

http://ijorlu.liau.ac.ir/article-1-449-en.html

A Mathematical Programming Model and Genetic Algorithm for a Multi-Product Single Machine Scheduling … 57

Due to the complexity of the problem, exact algorithms are inefficient for medium and large-
sized problems. For these problems, the performances of GA are compared with random
sequence, M-SPT and M-EDD procedures. The experimental results for the problems are
listed in Table 3 and showed in Fig. 5. Since, the results show that the performance of the
presented GA is satisfactory and can reach good-quality solutions within a reasonable
computational time (See Table 3 and Fig. 5).

Table 3 Comparison of all large-sized problems

Prob. n l
Random M-SPT M-EDD GA

FF Time
(s) FF Time

(s) FF Time
(s) FF Time

(s)

1 20 3 389,095.57 0.027 434,564.31 0.026 429,447.16 0.026 282,645.88 4.85
2 20 5 334,681.16 0.027 345,414.43 0.027 224,060.25 0.028 187,545.28 10.63

3 30 3 383,449.49 0.027 345,186.71 0.027 519,619.98 0.028 42,401.11 10.50
4 30 5 490,481.51 0.030 606,180.92 0.029 383,646.07 0.030 251,128.43 23.15

5 40 3 612,220.12 0.028 526,408.41 0.029 785,264.97 0.029 82,334.62 18.96
6 40 5 450,104.82 0.033 826,284.55 0.032 123,813.22 0.033 119,402.73 40.48

7 50 3 882,406.39 0.109 915,375.41 0.030 1,191,184.53 0.030 136,326.89 28.05
8 50 5 541,266.22 0.037 664,876.51 0.036 288,747.52 0.036 270,453.28 60.98

9 60 3 1,073,814.56 0.033 1,190,987.40 0.031 1,625,574.25 0.032 466,723.52 39.66
10 60 5 813,789.82 0.041 968,325.57 0.040 475,031.64 0.040 346,781.07 88.57

11 70 3 1,512,502.49 0.035 1,736,351.75 0.035 2,155,182.95 0.034 712,166.95 52.92
12 70 5 1,310,186.17 0.046 1,200,029.35 0.045 1,146,667.36 0.045 645,856.63 119.28

13 80 3 2,040,893.95 0.037 2,137,195.21 0.037 2,626,435.45 0.037 993,491.35 67.53
14 80 5 1579200.05 0.051 1,523,070.71 0.051 1,600,167.43 0.052 986,667.36 155.52

15 90 3 2,584,082.45 0.040 2,578,384.36 0.040 2,868,999.39 0.039 1,417,865.08 85.96
16 90 5 2,196,776.09 0.058 2,934,845.58 0.055 2,223,519.50 0.058 1,385,903.12 193.53

17 100 3 3,185,102.15 0.043 3,343,528.97 0.043 3,728,149.09 0.043 1,724,489.90 104.81

18 100 5 2,749,729.98 0.066 2,282,895.99 0.066 3,250,145.38 0.067 1,512,187.47 235.88

Fig. 5 Comparison of heuristics and GA for all large-sized problems

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fi
tn

es
s f

un
ct

io
n

(F
F)

Problem

Random M-SPT M-EDD GA

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
31

]

 9 / 12

http://ijorlu.liau.ac.ir/article-1-449-en.html

58 R. Ramezanian / IJAOR Vol. 5, No. 2, 49-60, Spring 2015 (Serial #16)

As depicted in Fig. 5, the resultant schedules from GA performed better in all cases.
Comparing effectiveness of solution methods
Total earliness and tardiness cost measure is used to evaluate the performance of the solution
approaches. A single factor ANOVA method is used to find out whether there is a significant
difference between performances of approaches. Table 4 shows ANOVA results for the
solution algorithms. There is at least one algorithm with different response based on obtained
results (p-value = 0.044) when confidence level is set at 0.95. Thus, Fisher’s least significant
difference method is applied to compare the performance of approaches. Table 5 presents the
results of this method. The results confirm that there is a significant difference between GA
with M-EDD, M-SPT and Random. Also, Table 5 shows no significant difference between
M-EDD with M-SPT and Random and between M-SPT and Random.

Table 4 ANOVA results for solution methods

Source df SS MS F P-value
Algorithm 3 7.09E+12 2.36E+12 2.84 0.044
Error 68 5.66E+13 8.32E+11

 Total 71 6.37E+13

Table 5 Fisher 95% individual confidence intervals all pair-wise comparisons

Algorithm Lower Upper Significant difference
at 95% level

GA vs. M-EDD 175,502 1,389,086 Yes
GA vs. M-SPT 115,182 1,328,766 Yes
GA vs. Random 35,731 1,249,315 Yes
M-EDD vs. M-SPT -667,111 546,473 No
M-EDD vs. Random -746,563 467,021 No
M-SPT vs. Random -686,243 527,341 No

Fig. 6 Means and interval plot for objective value

As can be seen from Fig. 6, genetic algorithm for related objective function in studied
problem is better than all of other heuristics. Due to the computational results, the superiority

Method

O
bj

ec
tiv

e
va

lu
e

RandomM-SPTM-EDDGA

2000000

1750000

1500000

1250000

1000000

750000

500000

Interval Plot of GA, M-EDD, M-SPT, Random
95% CI for the Mean

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
31

]

 10 / 12

http://ijorlu.liau.ac.ir/article-1-449-en.html

A Mathematical Programming Model and Genetic Algorithm for a Multi-Product Single Machine Scheduling … 59

of the proposed solution approach is concluded over other heuristics including M-EDD, M-
SPT and Random.

5 Conclusions

The aim of this paper is to formulate a single machine scheduling problem with considering
work and rework processes in manufacturing stages. A mixed-integer programming model is
proposed for determining the optimum sequence of jobs to minimize the sum of earliness and
tardiness costs. An adapted genetic algorithm is used to find the near optimal solution of the
proposed model for large-sized problems. Computational experiments showed that the
implemented meta-heuristic method can obtain good-quality solutions for all the test problem
instances.

Future research may be interested in further improvement of the MIP models considering
other assumptions such as sequence-dependent setup times, transportation constraints and
availability constraints. Due to the complexity of problem, the computation time grows
exponentially with problem size for exact algorithms, it is desired to develop a polynomial
time heuristic in the further research. As another interesting line for further research other
meta-heuristic algorithms with local search can be used to solve the problem.

References

1. Flapper, S.D.P., Fransoo, J.C., Broekmeulen, R.A.C.M. and Inderfurth, K. (2002). Planning and control of

rework in the process industries: A review, Production Planning & Control, 1, 26–34.
2. Flapper, S.D.P. and Jensen, T. (2003). Logistic planning and control of rework, International Journal of

Production Research, to appear.
3. Inderfurth, K. and Teunter, R.H. (2003). Production planning and control of closed-loop supply chains, In:

Guide, Jr., V.D.R., van Wassenhove, L.N. (Eds.), Business Perspectives on Closed-Loop Supply Chains.
Carnegie Mellon University Press, Oxford, 149–173.

4. Teunter, R.H. and Flapper S.D.P. (2003). Lot-sizing for a single-stage single-product production system
with rework of perishable production defectives, OR Spectrum, 25, 85–96.

5. Haji, R., Haji, A., Sajadifar, M. and Zolfaghari, S. (2008). Lot sizing with non-zero setup times for rework,
Journal of Systems Science and Systems Engineering, 17 (2), 230-240.

6. Inderfurth, K., Janiak, A., Kovalyov, M.Y. and Werner, F. (2006). Batching work and rework processes
with limited deterioration of reworkables, Computers and Operations Research, 33 (6),1595-1605.

7. Inderfurth, K., Kovalyov, M.Y., Ng, C.T. and Werner, F. (2007). Cost minimizing scheduling of work and
rework processes on a single facility under deterioration of reworkables, International Journal of Production
Economics. 105 (2), 345-356.

8. Kuhl, M.E. and Laubisch, G.R. (2004). A simulation study of dispatching rules and rework strategies in
semiconductor manufacturing, IEEE/SEMI advanced semiconductor manufacturing conference 4–6 May
2004, Boston, Massachusetts, USA, 325–329.

9. Sha, D.Y., Hsu, S.Y., Che, Z.H. and Chen, C.H. (2006). A dispatching rule for photolithography scheduling
with an on-line rework strategy, Computers & Industrial Engineering, 50 (3), 233-247.

10. Shin, H.J. and Kang, Y.H. (2010). A rework-based dispatching algorithm for module process in TFT-LCD
manufacture, International Journal of Production Research, 48 (3), 915-931.

11. Kang, Y.H. and Shin, H.J. (2010). An adaptive scheduling algorithm for a parallel machine problem with
rework processes, International Journal of Production Research, 48 (1), 95-115.

12. Flapper, S.D.P. and Teunter, R.H. (2004). Logistic planning of rework with deteriorating work in process”,
International Journal of Production Economics, 88 (1), 51–59.

13. Inderfurth, K., Lindner, G. and Rachaniotis, N.P. (2005). Lot sizing in a production system with rework and
product deterioration, International Journal of Production Research, 43 (7), 1355–1374.

14. Barketau, M.S., Cheng, T.C.E. and Kovalyov, M.Y. (2008). Batch scheduling of deteriorating reworkables,
European Journal of Operational Research, 189 (3), pp. 1317-1326.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
31

]

 11 / 12

http://ijorlu.liau.ac.ir/article-1-449-en.html

60 R. Ramezanian / IJAOR Vol. 5, No. 2, 49-60, Spring 2015 (Serial #16)

15. Tayebi Araghi, M.E., Jolai, F., and Rabiee, M. (2014). Incorporating learning effect and deterioration for
solving a SDST flexible job-shop scheduling problem with a hybrid meta-heuristic approach, International
Journal of Computer Integrated Manufacturing, 27(8), 33-746.

16. Yin, Y., Wu, W-H., Cheng, T.C.E., and Wu, C-C. (2015). Single-machine scheduling with time-dependent
and position-dependent deteriorating jobs, International Journal of Computer Integrated Manufacturing,
28(7), 781-790.

17. Mahnam, M., Moslehi, G., and Fatemi Ghomi. S.M.T. (2013). Single Machine Scheduling with Unequal
Release Dates and Idle Insert for Minimizing the Sum of Maximum Earliness and Tardiness, Mathematical
and Computer Modelling, 57, 2549–2563.

18. Keyvanfar, V., Mahdavi, I., and Komaki. G.H.M. (2013). Single Machine Scheduling with Controllable
Processing times to Minimize Total Tardiness and Earliness, Computers & Industrial Engineering, 65, 166–
175.

19. Seidgar, H., Kiani, M., Abedi, M., and Fazlollahtabar. H. (2014). An Efficient Imperialist Competitive
Algorithm for Scheduling in the Two-stage Assembly Flow Shop Problem, International Journal of
Production Research, 52(4) 1240–1256.

20. Seidgar, H., Abedi, M., and Tadayonirad S. (2015). A hybrid particle swarm optimisation for scheduling
just-in-time single machine with preemption, machine idle time and unequal release times, International
Journal of Production Research, 53(6), 1912-1935.

21. Ramezanian, R. and Saidi-Mehrabad, M., (2012). Multi-product unrelated parallel machines scheduling
problem with rework processes, Scientia Iranica E, 19(6), 1887–1893.

22. Gen, M., Tsujimura, Y. and Kubota, E. (1994). Solving job-shop scheduling problem using genetic
algorithms, In Proceeding of the 16th international conference on computer and industrial engineering,
Ashikaga, Japan, 576–579.

23. Gao, J., Gen, M., Sun, L. and Zhao, X. (2007). A hybrid of genetic algorithm and bottleneck shifting for
multiobjective flexible job shop scheduling problems, Computers & Industrial Engineering, 53, 149–162.

24. Gen, M. and Cheng, R. (1997). Genetic algorithms & engineering design, New York: Wiley.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
31

]

Powered by TCPDF (www.tcpdf.org)

 12 / 12

http://ijorlu.liau.ac.ir/article-1-449-en.html
http://www.tcpdf.org

