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Abstract  This paper analyzes an M/M/2 queueing system with two heterogeneous servers. 
Both servers goes on vacation when there is no customers waiting for service after this server 
1 is always available but the other goes on vacation whenever server 2 is idle. The vacationing 
server however, returns to serve at a low rate as an arrival finds the other server busy. The 
system is analyzed in the steady state using matrix geometric method.  
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1 Introduction 
 
We analyze an M/M/2 queue with working vacations (WVs), in which the server works with 
variable service rates rather than completely stops service during his/her vacation period. 
Such a vacation is called a working vacation. Each server starts a vacation when the system is 
empty at his service completion epoch. If server 1 returns from vacation and find server 2 
busy, and there is no customers in the system; then, he stays idle and ready for serving new 
arrivals. If the server 2 returns from a WV to find the system not empty, he immediately 
switches to the original service rate.   

The queueing systems with server vacations or WVs have been investigated by many 
researchers. Past work may be divided into two categories: (i) the case of server vacation and 
(ii) the case of WV. In the case of server vacation, the readers are referred to the survey paper 
by Doshi [1] and monograph of Takagi [2]. The works of Takagi [2] and Doshi [3] focus on a 
single server. As for multiple server system with vacations Zhang and Tian [4,5] gave a plenty 
analysis of M/M/c with synchronous multiple/single vacations of partial servers. In the case of 
working vacation, Servi and Finn [6] first examined an M/M/1 queue with multiple WVs 
where inter-arrival times, service times during service period, and vacation times are all 
exponentially distributed. They developed the explicit formulae for the mean and variance 
number of customers in the system, and the mean and variance waiting time in the system. 
Later Wu and Takagi [7] extended Servi and Finn’s [6] discuss the model M/M/1/WV queue 
to an M/G/1/WV queue. In [8] the model of [6] is generalized to the M/G/1queue. 
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In queueing models vacations can be classified as single and multiple server involving 
single vacation and multiple vacations. The server may take a vacation at a random time, after 
serving at most K customers or after all the customers in the queue are served. The queueing 
systems with single or multiple vacation have been introduced by Levy and Yachiali [9]. The 
literature about vacation models is growing rapidly which includes survey papers by Teghem 
[10], Doshi [1,3] and the monograph by Takagi [2]. We can find general models in Tian and 
Zhang [11]. In 2007, Li and Tian [12] first introduced vacation interruption policy and studied 
an M/M/1 queue. Recently, [13] have driven a new elegant explicit solution for a two 
heterogeneous servers queue with impatient behavior. In [14] the author considers an M/M/R 
queue with vacations, in which the server works with different service rates rather than 
completely terminates service during his vacation period. In [14] obtained an M/M/1 retrial 
queue with WVs, vacation interruption, Bernoulli feedback and N-policy simultaneously. 
During the WV period, customers can be served at a lower rate. Using the matrix-analytic 
method, we get the necessary and sufficient condition for the system to be stable. 

The study on multi-server queueing systems generally assumes the servers to be 
homogeneous in which the individual service rates are the same for all the servers in the 
system. This assumption may be valid only when the service process is mechanically or 
electronically controlled. In a queueing system with human servers, the above assumption can 
hardly realized. It is common to observe server rendering service to identical jobs at different 
service rates. This reality leads to modeling such multi-server queueing systems with 
heterogeneous servers, that is the service time distributions may be different for different 
servers. Levy and Yechiali [15] have discussed the vacation policy in a multi-server 
Markovian queue. They have considered a model with ‘s’ homogeneous servers and 
exponentially distributed vacation times. Using partial generating function technique, the 
system size has been obtained. Kao and Narayanan [16] have discussed the M/M/s queue with 
multiple vacations of the servers using a matrix geometric approach. Gray et al [17] have 
discussed a single counter queueing model involving multiple servers with multiple vacations. 
A researcher have discussed an M/M/s queue with multiple vacation and 1-limited service. 
Neuts and Lucantoni [18] have analyzed the M/M/s queueing systems where the servers are 
subject to random breakdowns and repairs. Baba [19] extended Servi and Finn’s [6] 
M/M/1/WV queue to a GI/M/1/WV queue. They not only assumed general independent 
arrival, they also assumed service times during service period, service times during vacation 
period as well as vacation times following exponential distribution. Furthermore, Baba [19] 
derived the steady- state system length distributions at arrival and arbitrary epochs. 

Neuts and Takahashi [20] observed that for queueing systems with more than two 
heterogeneous servers analytical results are intractable and only algorithmic approach could 
be used to study the steady state behavior of the system. Krishna Kumar and Pavai 
Madheswari [21] analyzed M/M/2 queueing system with heterogeneous servers where the 
servers go on vacation in the absence of customers waiting for service. Based on this 
observation, Krishnamoorthy and Sreenivasan [22] analyzed M/M/2 queueing system with 
heterogeneous servers where one server remains idle but the other goes on vacation in the 
absence of waiting customers. In this paper we discuss an M/M/2 queueing system with 
heterogeneous servers where both servers go on vacation in the absence of customers, for the 
remaining times server 1 is always in the system and server 2 go for vacation whenever it is 
idle. 
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2 Quasi Birth- and-death process Model  
 
Consider an M/M/2 queueing system with two heterogeneous servers. Arrivals of customers 
follow a Poisson process with parameter  . Let 1  and 2  be the service rates of server1 and 
server2 respectively, where 1 2  . The duration of vacation periods are assumed to be 
independent and identically distributed exponential random variables with parameters 1  and 

2 . During the vacation, if an arrival finds server 1 is busy then server 2 returns to serve the 
customer at a lower rate. To be precise server 2 serve this customers at the rate 2 , 0 1  . 
At this vacation gets over server 2 instantaneously switches over to the normal service rate 

2 , upon completion of a service at low rate if no customer is waiting for service then go for 
vacation and if at least one customer is waiting for service then server 2 is busy with normal 
service rate. The arriving customers are served under the first-come-first-served (FCFS) 
discipline. The vacation queueing model with heterogeneous server under consideration can 
be formulated as a continuous time Markov chain (CTMC). The possible states of the system 
at any epoch are represented by ( , )i j  where 0i   denotes the number of customers in the 
system and j=0,1,2,3 denotes the status of the servers. The state (0,0) represents there is no 
customers in the system and both servers are on vacation;  after the state (0,0) server 1 is 
always available in the system the state  ,1i  represent ( 0i  ) customers are in the system 

and server 1 is busy in the system while server 2 is on vacation; the state  , 2i  represent 0i   
customers in the system and server 1 is busy and server 2 is in working vacation mode; the 
state  ,3i  represent 0i   customers in the system and both servers are busy in the system 
with normal mode.  

Let Q denotes the infinitesimal generator of the continuous time Markov chain (CTMC) 
corresponding to this Q and is in the format of a quasi-birth-and –death (QBD) process. 
Define the levels 0,1,2,…, as the set of the states 0={(0,0)},       1 1,0 , 1,1 , 1,2 ,  and 

        ,0 , ,1 , , 2 , ,3i i i i i if 2i  . The state transition diagram of the system is as follows 
 

 
Fig. 1 
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Using the lexicographical sequence for the states the infinite generator can be written as 
 

00 01

10 11 12

21 1 0

2 1 0

2 1 0

. . .
. . .

. . .

B B

B B B
B A A

A A AQ
A A A

 
 
 
 
 
   
 
 
 
 
  

 

 
The sub-matrices A0, A1 and A2 are of order 4x4 and are given by 
 

0

0 0 0
0 0 0
0 0 0
0 0 0

A






 
 
 
 
 
 

 ,       1
2

1 2

1 2

0 0 0 0
0 0 0
0 0 0
0 0 0

A


 
 

 
 
 
 
 

 

 

1 2 1 2

1 2 2
1

1 2 2 2

1 2

( ) 0
0 ( ) 0
0 0 ( )
0 0 0 ( )

A

    
   

    
  

   
    
    
 

   

 

 
The boundary matrices are defined by  
 

00B   , 01 ( ,0,0)B   ,   10 1 1 20, , ( ) TB         

1 2 1 2

11 1

1 2

( )
0 ( ) 0
0 0 ( )

B
    

 
  

   
    
    

 

12

0 0 0
0 0 0
0 0 0

B





 
   
  

,    1
21

1 2

2 1

0 0 0
0 0
0

0

B

 

 

 
 
   
 
  

 

 
Define the matrix 0 1 2A A A A   . Then A is 4x4 matrix and it can be written as  

 

1 2 1 2

2 2

1

( ) 0
0 0
0 0 0
0 0 0 0

A

   
 



  
  
 
 
 
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2.1 Rate Matrix 
 
To analyze this QBD process, a very important matrix in evaluating the performance 
measures is the matrix R. it is known as the rate matrix of the Markov chain Q and it has the 
minimal non-negative solution of the matrix quadratic equation  

2
2 1 0 0R A RA A                           (2.1) 

Since the matrices A0, A1, and A2 are of order 4x4 upper triangular, R is also a 4x4 upper 
triangular matrix 
 
Lemma 2.1 

(a) The quadratic equation  
                 2

1 1 2( ) 0z z          includes the service rate 1  of server 1 and the 
vacation parameter 2  of server 2.  
Therefore, the above quadratic equation has two different real roots *

1 1r r  
and 10 1,r  *

1 1r     
where 

             2
1 1 2 1 2 1

1

1 ( ) ( ) 4
2

r       


        and 

             * 2
1 1 2 1 2 1

1

1 ( ) ( ) 4
2

r       


        

(b) The quadratic equation  
             2

1 2 1 2 2( ) ( ) 0z z              includes the service rate 1  of 
server 1 and the working vacation parameter 2  of server 2.  
Therefore, the above quadratic equation has two different real roots *

2 2r r  
and 20 1,r  *

2 1r    
where, 

              2
2 1 2 2 1 2 2 1 2

1 2

1 ( ) ( ) 4 ( )
2( )

r           
 

         


  

and 

              * 2
2 1 2 2 1 2 2 1 2

1 2

1 ( ) ( ) 4 ( )
2( )

r           
 

         


 

(c) The quadratic equation  
          2

1 2 1 2( ) ( ) 0z z            includes the two service rates 1  and 2  of 
server 1 and server 2 respectively, but it does not include the parameters 1 and 2 . 
From this it is clear that the above quadratic is for the case when both two servers are 
busy in service and it has two different real roots 1

3 1 2( )r         and *
3 1r  . 

From the matrix R, we find that the spectral radius 0,0 1,1 2,2 3,3( ) max( , , , ) 1sp R r r r r   if 
and only if 1  . Hence, we can prove that 1   is the necessary and sufficient condition for 
that the stability of the process  ( ), ( ), 0L t J t t   is to be positive recurrent (see Neuts [18]). 
Theorem 2.1 
If 1  , the matrix equation (2.1) has the minimal non-negative solution as follows: 
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0 0,1 0,3

1 1,3

2 2,3

0
0 0
0 0
0 0 0

r r r
r r

R
r r



 
 
   
 
  

 

Where  0,0
1 2

,r 
  


 

  1 0,0
0,1 *

1 1,1 0,0

,
( )
r

r
r r






  2 0,0

0,2 *
2 2,2 0,0

,
( )
r

r
r r






 

   

1,1 1 2 0,0
2 0,0*

1,1 1 1,1 0,0
0,3

1 2 0,0

1
(1 ) ( )

,
( )(1 )

a a
a

a a a
r

a

 




 

  
        

 
       1,1 2

1,3
1 2 1,1

,
( )(1 )

r
r

r


 


 
      

2 2,2
2,3

1 2 2,2

.
( )(1 )

a
r

a


 


 
 

Proof. 
 Since the coefficient matrices of equation (1) are all upper triangular, so let 

0,0 0,1 0,2 0,3

1,1 1,2 1,3

2,2 2,3

3,3

0
0 0
0 0 0

a a a a
a a a

R
a a

a

 
 
   
 
  

                   (2.2) 

 

 

 

1 2 3

1 0, ,1 1 2 0, ,2 1 2 0, ,3
0 0 0

2 3
2

1 1,1 1 2 1, ,2 1 2 1, ,32
1 12

3
2

1 2 2,2 1 2 2, ,3
2

2
1 2 3,3

0 ( )

0 ( )

0 0 ( )

0 0 0 ( )

i i i i i i
i i i

i i i i
i i

i i
i

a a a a a a

a a a a a
R A

a a a

a

    

    

   

 

  

 



 
  

 
 

    
 

  
 
  

  

 


      (2.3)  

   
2

1 2 0,0 0,0 1 1 2 0,1 1 2 2 0,2 2 0, 2 1 0,3
0

2

1 2 1,1 1 2 2 1,2 2 1, 2 1 1,31
1

1 2 2 2,2 2 2,2 2 1 2,3

2 1 3,3

( ) ( ) ( ) ( )

0 ( ) ( ) ( )

0 0 ( ) ( )
0 0 0 ( )

i
i

i
i

a a a a a a

a a a aRA

a a a
a

              

          

       

  





             

         

      

  








 
 
 
 
 
 
 

(2.4)  
 
Substituting (3),(4) and A0 into (1) gives the following set  of equations 

1 2 0,0( ) 0a                     (2.5) 
2

1 1,1 1 2 1,1( ) 0a a                                             (2.6) 

  2
1 2 2,2 2 1 2 2,2( ) 0a a                                                 (2.7) 

2
1 2 3,3 1 2 3,3( ) ( ) 0a a             (2.8) 
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1

1 0, ,1 0,0 1 1 2 0,1
0

( ) 0i i
i
a a a a    



       (2.9) 

 
2

1 2 0, ,2 0,0 2 2 1 2 0,2
0

( ) 0i i
i
a a a a      



        (2.10) 

 
2

1 2 1, ,2 2 1 2 1,2
1

( ) 0i i
i
a a a     



                                (2.11) 

3 2

1 2 0, ,3 2 0, 1 2 0,3
0 0

( ) ( ) 0i i i
i i
a a a a     

 

        (2.12) 

3 2

1 2 1, ,3 2 1, 1 2 1,3
1 1

( ) ( ) 0i i i
i i
a a a a     

 

           (2.13) 

3

1 2 2, ,3 2 2,2 1 2 2,3
2

( ) ( ) 0i i
i
a a a a     



                                           (2.14) 

 
From equation (2.5), we get  

0,0
1 2

,a 
  


 

     (2.15) 

Solving equation (2.9), we get 

 1 0,0
0,1 *

1 1,1 0,0

,
( )
a

a
a a






    (2.16) 

Solving equation (2.11), we get 
1,2 0a    (2.17) 

Using  (2.17) in equation (2.10), we get 
0,2 0a    (2.18) 

Using  (2.16)  in equation (2.12), we get 

 

1,1 1 2 0,0
2 0,0*

1,1 1 1,1 0,0
0,3

1 2 0,0

1
(1 ) ( )

,
( )(1 )

a a
a

a a a
a

a

 




 

  
        

 
  (2.19) 

Using  (2.17)  in equation (2.13), we get 
2 1,1

1,3
1 2 1,1

,
( )(1 )

a
a

a


 


 
 

 
Finally from equation (2.14), we have  

2 2,2
2,3

1 2 2,2

,
( )(1 )

a
a

a


 


 
 

 
It is clear that the above equations have unique non-negative solution. Therefore, this non-
negative solution must be the minimal. 
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3 Stationary Distribution 
 
Let L and J be the stationary random variables for the queue length and the status of the 
servers. Denote the stationary probability by 

 ,ijx P L i J j     

=  lim ( ) , ( ) , ( , ) .
t

P L t i J t j i j


    

 
Under the stability condition 1  , the stationary probability vector x of the generator Q 
exists. This stationary probability vector x is partitioned as 0 1 2( , , ,...)x x x x  where 0x  is a 
scalar. 1 10 11 12( , , )x x x x and  0 1 2 3( , , , )i i i i ix x x x x  for 2i     

Based on the matrix geometric solution method in (see Neuts [18]), the stationary 
probability vector x is given by  

0 00 1 10 0,x B x B           (3.1) 

0 01 1 11 2 21 0,x B x B x B     (3.2) 

 1 12 2 1 2 0,x B x A RA    (3.3) 
2

2 , 3, 4,5,...i
ix x R i   (3.4) 

 
and the normalizing equation 

1
0 1 1 2 2( ) 1x x e x I R e     (3.5) 

 
Where I is a 4x4 identity matrix, 1e is a 3x1 column vector and 2e is a 4x1 column vector with 
all their elements equal to one. 

  0 1 2 01
1 2 1 2 2 0* *

1 0 0 1 1 1 0

1 2
1 2

1 2 1

2
2 2

2

1 2

11 1
1 1 ( )

0
1

0 0 1
1

0 0 0 ( )

r rr r
r r r r r r

rh
A RA r

rh
r

 
     







 

        
                        

 
         

  
     

   
 
The equations (3.1), (3.2) and (3.3) can be written as the set of equations; 

0 1 11 1 2 12( ) 0x x x          (3.6) 

0 1 2 10( ) 0x x                                        (3.7) 

 1 10 1 11 1 21 1 22 2 23 0x x x x x                                                                    (3.8) 

 2 10 2 1 12 2 22 1 23 0x x x x                                             (3.9)  

10 1 2 20( ) 0x x                                       (3.10) 

0
11 20 1 21*

1 0

1 0
( )
rx x h x

r r


 
     

                                 (3.11) 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n 
20

26
-0

1-
29

 ]
 

                             8 / 15

http://ijorlu.liau.ac.ir/article-1-458-en.html


Analyses of a Markovian queue with two heterogeneous servers and working vacation 9 

12 2 20 2 21 2 22 0x x x h x                                       (3.12) 

1 2 2
20 21 2 22 1 2 23

1 2

1 ( ) 0
(1 ) 1
r rx x x x
r r


   

   
            

 (3.13)     

Where,  1 2 01
2 0*

0 1 1 1 0

1 1
1 1 ( )

rr r
r r r r

 
 


     

              
                  

Solving  equation (3.7), we get 
10 0 0x r x  

Solving equation (3.10), we get 
2

20 0 0x r x  
Solving the remaining equations, we have 

1 2 1
11 0

1

( )x x   


  
  
 

,  

12 1 0x x  

21 2 0x x  

22 3 0x x  

23 4 0x x  

Where,   4 6 5 1 1
1

6 1 2 3 2 2 1 1( ) ( )( )
h

h h
   


     
 

     
 

    4 1 1 2
2

1 1

( )
( )h

   



  

  
 

 

    
2

1 2 0 2 2
3

2

r
h

   


  
  
 

 

    

2 1 2 2 2
0 2 3

1 2
4

1 2

1
1 1

( )

r rr
r r

   


 

    
           

 
 
  

 

   2
1 1 2 2 0 1 0( ) r r           

     2 1 2 1 2( )( )           

               2
3 1 2 2 2 1

2

( ) 1
1
r
r

     
  

       
 

                2 20
4 1 1 0*

1 0

1 r r
r r

   
  

      
 

      2
5 1 2 2 3 0h r        

      1 2 1 2
6 2 3

11
r h

r
 

  
  

     
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2
1 1 2 1 2 1

1 ( ) ( ) 4
2

h                 

2
2 1 2 1 2 2 1 2

1 ( ) ( ) 4 ( )
2

h                      

               1( )I R    

1,3 0,1 0,3 10,1

0 0 1 0 1

1,3

1 1

2,3

2 2

(1 )1 0
1 (1 )(1 ) (1 )(1 )(1 )

10 0
1 (1 )(1 )

10 0
1 (1 )(1 )

10 0 0
1

r r r rr
r r r r r

r
r r

r
r r









                           
 

    
          

    
          
 

      

           (3.14) 

 
Substituting (3.14) and I where, I be the unit matrix of order 4x4 in (3.5), we get 

1 2 1
0 1 4

1 3,3

0,1 1,3 0,1 0,3 1,1 2
0

0,0 0,0 1,1 0,0 1,1 3,3

1,3 2,3
2

1,1 1,1 3,3 2,2

( ) 11
(1 )

(1 )1
(1 ) (1 )(1 ) (1 )(1 )(1 )

1 1
(1 ) (1 )(1 ) (1 ) (1

r
r

r r r r r
y r

r r r r r r

r r
r r r r

     




   
           
              
      

     
3

2,2 3,3)(1 )r r


 
 
 
 
 
 
 
     

     

 

1
0x y  

 
Let L denote the stationary queue length at an arbitrary epoch. Therefore, the mean, second 
moment and variance of the number of customers in the system can be obtained as  

 2 1
1 1 2 2 2 2( ) 2 ( ) 2( )E L x e x e x R I R I R e          

2 1 2 3
1 1 2 2 2 2( ) 4 ( ) ( ) 2( ) 4E L x e x e x I R I R I R I e              

and   
 22var( ) ( ) ( )L E L E L   

 
 
4 The Busy Period 
 
For the working vacation model with heterogeneous servers, the busy period is defined to be 
the interval between the arrival of a customer to an empty system and first epoch thereafter 
when the system becomes empty again. Thus, the busy period is the first passage time from 
state (1,0) to state (0,0). For the working vacation model, busy cycle for the system is the time 
interval between two successive departures, which leave the system empty. Therefore, the 
busy cycle is the first return time to state (0,0) with at least one visit to any other state.  
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To discuss busy period analysis, the notion of fundamental period (14) should be briefly 
reviewed. For the QBD process described above, starting from a state in level i, where 3i  , 
the first passage time to a state in level i-1 constitutes a fundamental period. The cases i=2, 
i=1, and i=0 corresponding to the boundary states need to be discussed separately. Because of 
the structure of the QBD process, the first passage time distribution is invariant in i.  

Let ' ( , )
jj

G k t denote the conditional probability that a QBD process starting in the state (i,j) 
at time t=0, the first visit to level i-1 occurs no later than time t, into the state (i-1,j’) and 
exactly k transitions occur to the left during the first passage time.   

 The matrix representation of joint transforms of ( , )G z s  is defined by 

1 0

( , ) ( , )k st

k

G z s z e dG k t






   for 1Z  , Re 0s      (4.1) 

( , )G z s  satisfies the relation 1( , ) ( , )
nnG z s G z s     for 1n    (4.2) 

and define   1( , ) ( , )G z s G z s  
 
then the matrix ( , )G z s  satisfies the equation 

   1 1 2
1 2 1 0( , ) ( , )G z s z sI A A sI A A G z s        (4.3) 

 
To discuss the boundary conditions for the vacation model, for i = 1,2, let '

( , 1) ( , )i i
jj

G k t  denote 

the conditional probability that a QBD process, starting in the state (i, j) at time 0, reaches the 
level i-1 for the first time no later than t, after exactly k transitions to the left and does so by 
entering the state (i-1, j’). let ( , 1) ( , )i iG z s  denote the transform matrix corresponding to 

( , 1) ( , )i iG k t . Using the similar argument in (4.3), we get   

   1 1(2,1) (2,1)
1 21 1 0( , ) ( , ) ( , ),G z s z sI A B sI A A G z s G z s         (4.4) 

    1 1(1,0) (2,1) (1,0)
11 10 11 12( , ) ( , ) ( , ),G z s z sI B B sI B B G z s G z s      (4.5) 

(0,0) (1,0)( , ) ,0,0 ( , ),G z s G z s
s



    
                                                (4.6) 

Where (0,0) ( , )G z s  is the joint transform of the recurrence time to state (0,0) with at least one 
visit to a state other than state (0,0).  Note that (1,0) ( , )G z s  is of 3x1. The Laplace Stieltjes 
transform (LST) for the length of a busy period is then given by the first element of 

(1,0) (1 , )G s , that is, the element corresponds to the first passage from state (1,0) to the state 
(0,0). The busy cycle comprises an idle period and a busy period. The LST for the length of a 
busy cycle is given by (0,0) (1 , )G s . 
Let the matrices 

1
0

lim ( , ),
z
s

G G z s
 
 

  (2,1)
2,1 1

0

lim ( , ),
z
s

G G z s
 
 

  (1,0)
1,0 1

0

lim ( , ),
z
s

G G z s
 
 

 and  

(0,0)
0,0 1

0

lim ( , ).
z
s

G G z s
 
 

               (4.7) 
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The positive recurrence of the process Q implies that G, 2,1G , 1,0G  and 0,0G  are all stochastic 

and 0,0 (1,1,1)TG  . Let 1
0 1 2( ) ,C A A  1

2 1 0( ) .C A A   in (14) it has been proved that G is 

the minimal non negative solution to the equation 2
0 2G C C G  . 

 Taking the 
1
0

lim
z
s
 
 

 on both sides of the equations (4.4), (4.5), (4.6) and using (4.7), we get 

1
2,1 1 0 21,( )G A A G B                   (4.8) 

1
1,0 11 12 21 10,( )G B B G B              (4.9) 

 0,0 101 0 0 .G G                                   (4.10) 
 
If we found the value of the matrix R then matrix G can be computed using the following 
result (15), 

1
1 2 2( ) .G A RA A            (4.11) 

Let 1
1, 0

( , )
z s

G z sM
s  





 it has been proved (14) that the matrix 1M  can be computed by 

successive substitutions in  
 1

1 1 2 1 1 ,M A G C GM M G      
With 0 as the starting value for 1M . For the boundary states, differentiating (4.4), (4.5) and 
(4.6) with respect to s and setting s=0, z=1, we get 

1
2,1 1 0 0 2,1( ) ( ) ,M A A G I A M G     

1
1,0 11 12 21 12 21 1,0( ) ( ) ,M B B G I B M G     

It is clear that 1,0M  can be computed recursively starting with 1M  in decreasing order. 
Assuming 0,0M  as the mean recurrence time for state (0,0), a similar operation leads to 

 0,0 1,0 1,0
1 0 0 10 0 .M G M

    

 

Where  
(2,1)

2,1
1, 0

( , )

z s

G z sM
s

 





 

(1,0)

1,0
1, 0

( , )

z s

G z sM
s

 





 

(0,0)

0,0
1, 0

( , )

z s

G z sM
s

 





 

It is note that the mean length of a busy cycle is 0,0M . The first element of the column vector 

1,0M yields the mean length of a busy period, E(B). the mean length of a server vacation 

period, E(v) is 
1 2

1
 

. The mean length of a server busy period is obtained as E(B)-E(V). 
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Table 1 
 

  
1 20.7, 3, 1      

 1 210, 5     1 28, 8    

 [ ]E L  2[ ]E L  Var(L) [ ]E L  2[ ]E L  Var(L) 
2 0.8055 1.7748 1.1260 0.8572 1.9081 1.1733 
4 1.7254 5.7183 2.7414 1.8597 6.3006 2.8422 
6 2.8105 12.7750 4.8762 3.0508 14.5064 5.1993 
8 4.1633 25.3177 7.9847 4.4998 29.4524 9.2040 

10 6.0124 49.9098 13.7611 6.3654 57.1470 16.6291 
12 9.3096 115.8571 29.1889 9.1843 114.6471 30.2961 

 
 
Table 2 

  

1 20.7, 3, 1      1 20.7, 1, 3      

1 25, 10    1 210, 5    

[ ]E L  2[ ]E L  Var(L) [ ]E L  2[ ]E L  Var(L) 

2 1.0451 2.4825 1.3901 0.8797 1.9192 1.1452 
4 2.3418 9.0528 3.5686 1.6970 5.2289 2.3490 
6 3.8745 22.8721 7.8607 2.4972 10.1618 3.9259 
8 5.7453 49.2668 16.2579 3.4201 17.9936 6.2963 

10 8.2651 98.1197 29.8078 4.7140 33.0041 10.7822 
12 12.5174 206.9532 50.2688 7.2500 77.5638 25.0016 

      

  

1 20.7, 1, 3      1 20.7, 1, 3      

1 28, 8    1 25, 10    

[ ]E L  2[ ]E L  Var(L) [ ]E L  2[ ]E L  Var(L) 

2 0.8914 1.9297 1.1350 0.9752 2.1334 1.1824 
4 1.7044 5.1609 2.2559 1.8498 5.6507 2.2290 
6 2.4718 9.7623 3.6524 2.6646 10.6711 3.5712 
8 3.3112 16.6156 5.6518 3.5903 18.6125 5.7220 

10 4.3985 28.3871 9.0399 4.9158 34.1461 9.9812 
12 6.2137 55.7571 17.1471 7.5645 80.8240 23.6019 

 
Table 3 
 

  
 1 20.7, 2, 2      

 1 210, 5     1 28, 8    

 [ ]E L  2[ ]E L  Var(L) [ ]E L  2[ ]E L  Var(L) 
2 0.8393 1.8341 1.1296 0.8685 1.8947 1.1404 
4 1.6930 5.3562 2.4901 1.7434 5.4858 2.4463 
6 2.5817 10.9024 4.2373 2.6285 10.9963 4.0875 
8 3.6175 19.8615 6.7753 3.6109 19.4918 6.4533 

10 5.0411 36.8464 11.4337 4.8623 34.0356 10.3935 
12 7.7514 85.6532 25.5685 6.8842 66.4325 19.0400 
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Table 4 

 
 1 20.7, 2, 2      

1 25, 10    

 [ ]E L  2[ ]E L  Var(L) 
2 0.9908 2.2200 1.2383 
4 1.9797 6.4819 2.5628 
6 2.9588 13.1594 4.4048 
8 4.0781 24.0372 7.4065 

10 5.6392 44.5591 12.7591 
12 8.6188 101.0972 26.8131 
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