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Abstract  Aggregate production planning (APP) is one of the most important issues carried out in 
manufacturing environments which seeks efficient planning, scheduling and coordination of all 
production activities that optimizes the company's objectives. In this paper, we develop a mixed 
integer linear programming (MILP) model for an integrated aggregate production planning system 
with closed loop supply chain and preventive maintenance. The goal is to minimize setup costs, 
production costs, labor costs and preventive maintenance (PM) costs and instabilities in the work force 
and inventory levels. Due to NP-hard class of APP, we implement genetic algorithm (GA), harmony 
search (HS) and vibration damping optimization (VDO) for solving this model. Additionally, the 
Taguchi method is conducted to calibrate the parameter of the meta-heuristics and select the optimal 
levels of the algorithm’s performance influential factors. Finally, computational results on a set of 
randomly generated instances show the efficiency of the VDO algorithm against the other meta-
heuristics, and this algorithm obtain good quality solutions for aggregate production planning with 
preventive maintenance and could be efficient for large scale problems. 
 
Keywords: Aggregate production planning, Preventive maintenance, Genetic algorithm, Harmony 
search, Vibration damping optimization. 
 
 
1 Introduction 
 
Aggregate production planning (APP) is a medium-range planning. Aggregate production 
plans are necessary to maximize workforce opportunity and constitute a crucial part of 
operations management, and help match supply and demand while minimizing costs. 
Aggregate production planning applies the upper-level forecasts to lower-level, production-
floor scheduling and is most effective when applied to periods 2 to 18 months in the future. 
Plans generally either "chase" demand, adjusting workforce accordingly, or are "level" plans, 
meaning that labor is relatively constant with fluctuations in demand being met by inventories 
and back orders. One of the first multi-objective models is presented by Masud and Hwang. 
They presented a multiple objective formulation of the multi-product, multi-period aggregate 
production planning problem. For solving this model, they used three multiple objective 
decision making methods [1]. Lee studies a two-machine flowshop scheduling problem with 
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an availability constraint. He assumes that a machine may not always be available. Also if a 
machine continues to process those unfinished jobs that were scheduled in the previous 
planning period, then it is not available at the beginning of the period. Lee studies the problem 
under a deterministic environment. Namely, Lee assumes that the unavailable time is known 
in advance. He proves that the problem is NP-hard and he develop pseudo-polynomial 
dynamic programming algorithm to solve the problem optimally [2]. Leung et al propose a 
goal programming approach to multi-site aggregate production planning with multiple 
objectives such as the maximization of profit, minimization of the change of workforce level 
and maximization of utilization of import quota [3]. Wang and Liang presented a novel 
interactive possibility linear programming (PLP) approach for solving the multi-product 
aggregate production planning (APP) problem with imprecise forecast demand, related 
operating costs, and capacity [4]. Leung and Chan address the aggregate production planning 
problem with different operational constraints, including production capacity, workforce 
level, factory locations, machine utilization, storage space and other resource limitations. A 
pre-emptive goal programming model is developed to maximize profit, minimize repairing 
cost and maximize machine utilization of the Chinese production plant hierarchically [5]. 
Ramezanian et al develop a mixed integer linear programming (MILP) model for general two-
phase aggregate production planning systems. The goal is to minimize costs and instabilities 
in the work force and inventory levels. They presented genetic algorithm and tabu search for 
solving this problem [6]. Sadeghi et al proposed a multi-objective model for aggregate 
planning problem in which the parameters of the model are expressed in the form of grey 
numbers. The suggested grey multi-objective model is solved based on a goal programming 
problem with fuzzy aspiration levels [7]. Wang and Yeh, present a scheme of an aggregate 
production planning (APP) from a manufacturer of gardening equipment. It is formulated as 
an integer linear programming model and optimized by PSO [8]. 

Preventive maintenance, where equipment is maintained before break down occurs. This 
type of maintenance has many different variations and is subject of various researches to 
determine best and most efficient way to maintain equipment. Preventive maintenance (PM) 
has the following meanings: (1) The care and servicing by personnel for the purpose of 
maintaining equipment and facilities in satisfactory operating condition by providing for 
systematic inspection, detection, and correction of incipient failures either before they occur 
or before they develop into major defects. (2) Maintenance, including tests, measurements, 
adjustments, and parts replacement, performed specifically to prevent faults from occurring. 
Production planning models seek typically to balance the costs of setting up the system with 
the costs of production and materials holding, while maintenance models attempt typically to 
balance the costs and benefits of sound maintenance plans in order to optimize the 
performance of the production system. In both domains, issues of production modeling and 
maintenance modeling have experienced an evident success both from theoretical and applied 
viewpoints. Paradoxically the issue of combining production and maintenance plans has 
received much less attention [9]. Adiri et al, presented for the first time, a production planning 
model for machine failure costs. They show that the single-machine scheduling problem with 
machine failure, even when the failure is already known from the type of NP-Hard problems 
[10]. Wienstein and Chung proposed a three-part model for evaluation of maintenance 
policies. In their approach, the Aggregate production planning is considered for the first time. 
In order to resolve often conflicting objectives of system reliability and profit maximization, 
an organization should establish appropriate maintenance guidelines that take into 
consideration (1) costs associated with performing production activities, (2) costs associated 
with performing maintenance activities, and (3) the various costs associated with equipment 
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failure and the resulting interruptions to the production plan. In currently prevailing practices, 
maintenance policy often is determined at the operational level in a political test between 
production and maintenance management. The resulting policy often is not optimal for the 
organization's overall objectives [11]. Lee and Chen study the problem of processing a set of 
n jobs on m parallel machines where each machine must be maintained once during the 
planning horizon. Their objective is to schedule jobs and maintenance activities so that the 
total weighted completion time of jobs is minimized [12]. Aghezzaf and Najid discuss the 
issue of integrating production planning and preventive maintenance in manufacturing 
production systems. In particular, it tackles the problem of integrating production and 
preventive maintenance in a system composed of parallel failure-prone production lines. It is 
assumed that when a production line fails, a minimal repair is carried out to restore it to an 
‘as-bad-as-old’ status. Preventive maintenance is carried out, periodically at the discretion of 
the decision maker, to restore the production line to an ‘as-good-as-new’ status. It is also 
assumed that any maintenance action, performed on a production line in a given period, 
reduces the available production capacity on the line during that period [13]. Pan et al. 
suggested an integrated scheduling model incorporating both production scheduling and 
preventive maintenance planning for a single machine in order to minimize the maximum 
weighted tardiness [14]. Nourelfath and Chatelet  paper deals with the problem of integrating 
preventive maintenance and tactical production planning, for a production system composed 
of a set of parallel components, in the presence of economic dependence and common cause 
failures. Economic dependence means that performing maintenance on several components 
jointly costs less money and time than on each component separately. Common cause failures 
correspond to events that lead to simultaneous failure of multiple components due to a 
common cause [15]. Yalaoui et al propose an extended linear programming model as a hybrid 
approach for computing the optimum production plan with minimum total cost. The dual 
objective problem of production planning and maintenance is treated into a mixed integer 
linear program. This program is not only considering cases of multi-lines, multi-periods and 
multi-items but also taking into account the deterioration of the lines. This deterioration is 
represented in the model as a reduction of production lines capacities in function of the time 
evolution. Maintenance operations are supposed to provide lines in an operational state as 
good as new, i.e. with a maximum capacity [16]. 

The large part of the production planning models assumes that the system will function at 
its maximum performance during the planning horizon, and the large part of the maintenance 
planning models disregards the impact of maintenance on the production capacity and does 
not explicitly consider the production requirements [9]. It is therefore crucial that both 
production and maintenance aspects related to a production system are concurrently 
considered during the elaboration of optimal production and maintenance plans. The purpose 
of this paper is to develop a combined production planning model for two phase production 
systems and preventive maintenance in an aggregate production planning. The main objective 
of the proposed model is to determine an integrated production and maintenance plan that 
minimizes the expected total production and maintenance costs over a planning horizon. 

The remaining of this paper is organized as follows: Section 2 describes a MILP 
formulation of the aggregate production planning model with preventive maintenance. The 
solution approaches genetic algorithm (GA), harmony search (HS) and vibration damping 
optimization (VDO) are presented in Sections 3, 4 and 5. Section 6 presents computational 
experiments. The conclusions and suggestions for future studies are included in Section 7. 
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2 Problem formulation 
 
In this section, we present a MILP formulation of the problem. This model is relevant to 
multi-period, multi-product, multi-machine, two-phase production systems. 
 
 
2.1 Assumptions 
 

 The quantity shortage at the beginning of the planning horizon is zero. 
 The quantity shortage at the end of the planning horizon is zero. 
 Maintenance decision variable, if maintenance to be performed, the decision variable 

is equal to one, and otherwise it is zero. 
 There is a setup cost of producing a product only once at the beginning of a period,  

And the setup cost after a failure is not considered. 
 If maintenance is not performed in period t, the time and cost of maintenance will not 

apply to the model, the failure costs will be considered in period t+1 instead, and 
downtime will be deducted from available machine capacity. 
 
 

2.2 Decision variables 
 
Pi2t: Regular time production of second-phase product i in period t (units). 
Oi2t: Over time production of second-phase product i in period t (units). 
Ci2t: Subcontracting volume of second-phase product i in period t (units). 
Bi2t: Backorder level of second-phase product i in period t (units). 
Ii2t: The inventory of second-phase product i in period t (units). 
Ht: The number of second group workers hired in period t (man-days). 
Lt: The number of second group workers laid off in period t (man-days). 
Wt: Second workforce level in period t (man-days). 
Yi2t: The setup decision variable of second-phase product i in period t, a binary integer 
variable. 
XRi2t: The number of second-phase returned products of product i that remanufactured in 
period t. 
XRIi2t: The number of second-phase returned products of product i held that in inventory at 
the end of period t. 
XDi2t: The number of second-phase returned products of product i that disposed in period t. 
Pk1t: Regular time production of first-phase product k in period t (units). 
Ok1t: Over time production of first-phase product k in period t (units). 
Ck1t: Subcontracting volume of first-phase product k in period t (units). 
Bk1t: Backorder level of first-phase product k in period t (units). 
Ik1t: The inventory of first-phase product k in period t (units). 
H't: The number of first group workers hired in period t (man-days). 
L't: The number of first group workers laid off in period t (man-days). 
W't: First workforce level in period t (man-days). 
Yk1t: The setup decision variable of first-phase product k in period t, a binary integer variable. 
PMFlt: The preventive maintenance decision variable of first-phase machine l in period t, a 
binary integer variable. 
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PMSjt: The preventive maintenance decision variable of second-phase machine j in period t, a 
binary integer variable. 

 

 
2.3 Parameters 
 
pk1t: Regular time production cost of first-phase product k in period t ($/units). 
ok1t: Over time production cost of first -phase product k in period t ($/units). 
ck1t: Subcontracting cost of first-phase product k in period t ($/units). 
hk1t: Inventory cost of first-phase product k in period t ($/units). 
ak1l: Hours of machine l per unit of first-phase product k (machine-days/unit). 
uk1l: The setup time for first-phase product k on machine l (hours). 
rk1lt: The setup cost of first-phase product k on machine l in period t ($/machine-hours). 
R'kt: The regular time capacity of machine l in period t (machine-hours). 
hr't: Cost to hire one worker in period t for first group labor ($/man-days). 
l't: Cost to layoff one worker of first group in period t ($/man-days). 
w't: The first group labor cost in period t ($/man-days). 
Ik10: The initial inventory level of first-phase product k in period t (units). 
w'0: The initial first group workforce level (man-days). 
Bk10: The initial first group backorder level (man-days). 
ek1: Hours of labor per unit of first-phase product k (man-days/unit). 
α't: The ratio of regular-time of first group workforce available for use in overtime in period t. 
β'lt: The ratio of regular time capacity of machine l available for use in overtime in period t. 
w'max t: Maximum level of first group labor available in period t (man-days). 
Di2t: Forecasted demand of second-phase product i in period t (units). 
pi2t: Regular time production cost of second-phase product i in period t ($/units). 
oi2t: Over time production cost of second-phase product i in period t ($/units). 
ci2t: Subcontracting cost of second-phase product i in period t ($/units). 
hi2t: Inventory cost of second-phase product i in period t ($/units). 
ai2j: Hours of machine j per unit of second-phase product i (machine-days/unit). 
ui2j: The setup time for second-phase product i on machine j (hours). 
ri2jt: The setup cost of second-phase product i on machine j in period t ($/machine-hours). 
Rjt: The regular time capacity of machine j in period t (machine-hours). 
hrt: Cost to hire one worker in period t for second group labor ($/man-days). 
lt: Cost to layoff one worker of second group in period t ($/man-days). 
wt: The first group labor cost in period t ($/man-days). 
Ii20: The initial inventory level of second-phase product i in period t (units). 
w0: The initial second group workforce level (man-days). 
Bi20: The initial second group backorder level (man-days). 
ei2: Hours of labor per unit of second-phase product i (man-days/unit). 
αt: The ratio of regular-time of second group workforce available for use in overtime in period 
t. 
βjt: The ratio of regular time capacity of machine j available for use in overtime in period t. 
f: The working hours of labor in each period (man-hour/man-day). 
wmax t: Maximum level of second group labor available in period t (man-days). 
Cmax it: Maximum subcontracted volume available of second-phase product i in period t 
(units). 
fik: The number of unit of first-phase product k required per unit of first-phase product i. 
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TRi2t: The number of second-phase returned products of product i in period t. 
XDmax i2t: The maximum number of second-phase returned products of product i that could be 
disposed in period t. 
XRmax i2t: The maximum number of second-phase returned products of product i that could be 
remanufactured in period t. 
hXi2t: Inventory cost of second-phase returned products of product i in period t ($/units). 
MTSjt: The preventive maintenance time of second-phase machine j in period t (minutes). 
MTFlt: The preventive maintenance time of first-phase machine j in period t (minutes). 
C1l1t: Failure cost of first-phase machine l in period t ($). 
C2l1t: Maintenance cost of first-phase machine l in period t ($). 
C3j2t : Failure cost of second-phase machine j in period t ($). 
C4j2t : Maintenance cost of second-phase machine j in period t ($). 
C5i2t : The cost of returned products of second-phase product i that disposed in period t ($). 
C6i2t: The cost of returned products of second-phase product i that remanufactured in period t 
($). 
m : Percentage of machine capacity in each period (due to lack of maintenance in the previous 
period) is lost due to Failure. 
LT : Lead time. 
M: A large number. 
 
 
2.4 The proposed model 
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2 2 1,2,..., 1, 2,...,. 0i t i t i N t TB I       (20) 
1 1 1,2,..., 1. 0 , 2,...,;k t k t K tB I k T      (21) 

2 2, 1 2 2 2 ; 1,2,..., 1, 2,...,i t i t i t i t i tXR XRI XD XR i N t TTR          (22) 

2 max 2 1,2,..., 1, 2,...,i t i t iXD XD N t T       (23) 
2 max 2 1,2,..., 1, 2,...,i t i t iXR XR N t T       (24) 

2 {0,1}; 1,2,..., 1, 2,...,i tY i N t T     (25) 
2 {0,1}; 1, 2,..., 1,2,...,k tY k K t T     (26) 

{0,1}; 1, 2,..., 1,2,...,ltPMF l L t T      (27) 
{0,1}; 1,2,..., 1,2,...,jtPMS j J t T     (28) 

2 1, 2,...,0;i T iB N    (29) 
1 1,2,...,0;k TB k k    (30) 

0 1; 1,2,...,lPMF l L   (31) 
0 1; 1, 2,...,jPMS j J   (32) 

 
 
3 The genetic algorithm 
 
In the computer science field of artificial intelligence, genetic algorithm (GA) is a search 
heuristic that mimics the process of natural selection. This heuristic (also sometimes called a 
meta-heuristic) is routinely used to generate useful solutions to optimization and search 
problems [17]. The GA proposed by Holland (1975) to encode the features of a problem by 
chromosomes, where each gene represents a feature of the problem. In general, GA consists 
of the following steps: 
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Step 1: Initialize a population of chromosomes. 
Step 2: Evaluate the fitness of each chromosome. 
Step 3: Create new chromosomes by applying genetic operators such as reproduction, 
crossover and mutation to current chromosomes. 
Step 4: Evaluate the fitness of the new population of chromosomes. 
Step 5: If the termination condition is satisfied, stop and return the best chromosome; 
otherwise, go to Step 3. 
Our implementation of genetic algorithm is presented as follow: 
 
3.1. Representation schema    
To design genetic algorithm for mentioned problem, a suitable representation scheme that 
shows the solution characteristics is needed. In this paper, each gene is total aggregate 
production (X) of second-phase products and a chromosome is a production plan. The X is 
decomposed to the regular time production, overtime production, returned products that could 
be remanufactured and subcontracting volume. The general structure of the solution 
representation performed for running the genetic algorithm on second-phase with six periods 
and two products is shown in Fig 1. 
 

 
X126 X125 X124 X123 X122 X121 Total aggregate production for second-phase product 1 
X226 X225 X224 X223 X222 X221 Total aggregate production for second-phase product 2 

 
Fig.1 Chromosome representation 
 
 
3.2 Selection 
 
The selection provides the opportunity to deliver the gene of a good solution to next 
generation. There are various selection operators available that can be used to select the 
parents. In this study, the tournament selection is employed. 
 
 
3.3 Crossover 
 
Crossover is a process in which chromosomes exchange genes through the breakage and 
reunion of two chromosomes to generate a number of children. Crossover’s offspring should 
represent solutions that combine substructures of their parents. In this study, crossover 
generates an offspring by combining two selective parents as shown in Fig 2 and Fig 3. 
 

X126 X125 X124 X123 X122 X121 Parent1 
X226 X225 X224 X223 X222 X221  

 
X126 X125 X124 X'123 X'122 X'121 Offspring 
X'226 X'225 X'224 X223 X222 X221  

 
X'126 X'125 X'124 X'123 X'122 X'121 Parent2 
X'226 X'225 X'224 X'223 X'222 X'221  

 
Fig.2  Illustration of the One-point crossover structure 
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X126 X125 X124 X123 X122 X121 Parent1 
X226 X225 X224 X223 X222 X221  

 
X'126 X'125 X124 X'123 X'122 X121 Offspring 
X'226 X'225 X224 X'223 X'222 X221  

 
X'126 X'125 X'124 X'123 X'122 X'121 Parent2 
X'226 X'225 X'224 X'223 X'222 X'221  

Fig.3  Illustration of the two-point crossover structure 
 
 
3.4 Mutation 
 
Mutation is a genetic operator used to maintain genetic diversity from one generation of a 
population of genetic algorithm chromosomes to the next. It is analogous to biological 
mutation. Mutation alters one or more gene values in a chromosome from its initial state. In 
mutation, the solution may change entirely from the previous solution. Hence GA can come to 
better solution by using mutation. Mutation occurs during evolution according to a user-
definable mutation probability. This mutation operator takes the chosen genome and reduces 
the total aggregate production level for a random selective period by the amount of β and then 
it is added to other selective period at each row of current solution as shown in Fig 4 
illustrates this operation.  
 

 
X126 X125 X124 X123 X122 X121 Parent 
X226 X225 X224 X223 X222 X221  

 
X126 X125+β X124 X123 X122-β X121 Offspring 
X226 X225 X224+β X223 X222 X221-β  

Fig.4. Illustration of the mutation structure 
 
The principle of this operator is based on the following equation, shown for X122:  

 
 

 
 
3.5 Fitness function 
 
The fitness function is the same as the objective function which is defined in Section 2. 
 
 
3.6 Termination condition 
 
The search process stops if the some specified number of generations without improvement of 
the best known solution is reached. In our experiments we accepted stop= 100. 
 
 

122 ; [0.1,1]X  
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4 Harmony search 
 
Harmony search (HS) algorithm was developed in an analogy with music improvisation 
process where music players improvise the pitches of their instruments to obtain better 
harmony [18]. The steps in the procedure of HS are as follows [19]: 
Step 1. Initialize the problem and algorithm parameters. 
Step 2. Initialize the harmony memory. 
Step 3. New harmony improvisation. 
Step 4. Update the harmony memory. 
Step 5. Check the stopping criterion. 
The pseudo-code of the original harmony search algorithm for the problem is shown in Fig 5: 
 

 
 
Fig. 5 Pseudo-code of the original harmony search 
 
The search process stops if the some specified number of generations without improvement of 
the best known solution is reached. In our experiments we accepted Stop= 100. 
 
 
5 Vibration damping optimization 
 
Recently, a new heuristic optimization technique based on the concept of the vibration 
damping in mechanical vibration was introduced by Mehdizadeh and Tavakkoli-Moghaddam 
named vibration damping optimization (VDO) algorithm [20]. The VDO algorithm is 
illustrated in the following steps: 
Step 1. Generating feasible initial solution. 
Step 2. Initializing the algorithm parameters which consist of: initial amplitude (A0), 
maximum Number of Sub-iteration (sub-it), number of generations without improvement 
(Stop), damping coefficient (γ), and standard deviation (σ =1). Finally, parameter S is set in 
one (S=1)  
Step 3. Calculating the objective value U0 for initial solution. 
Step 4. Initializing the internal loop 
 In this step, the internal loop is carried out for l =1 and repeat while l ≤ sub-it. 
Step 5. Neighborhood generation. 

Harmony search 
Objective function f(xi), i=1 to N 
Define HS parameters: HMS, HMCR, PAR, and BW 
Generate initial harmonics (for i=1 to HMS) 
Evaluate f (xi) 
While (t<Max number of iterations) 
Create a new harmony: xi

new, i=1 to N 
If(U(0,1)>HMCR), 
xi

new=xj
old, where xj

old is a random from {1, …, HMS} 
Else if If (U (0,1)>PAR), 
xi

new=xj
old + BW [(2×U (0,1))-1], where xj

old is a random 
from {1,…,HMS} 
Else 
xi

new=xL(i)+ U(0,1)×[xU(i) - xL(i)] 
End if 
Evaluation f (xi

new) 
Accept the new harmonics (solutions) if better 
End while 
Fine the current best estimates 
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Step 6. Accepting the new solution 
Set 0U U    Now, if ∆ < 0, accept the new solution, else if ∆ > 0 generate a random number 
between (0, 1); 

If
2

1 exp 22

ASr


      
 

, then accept a new solution;  

Otherwise, reject the new solution and accept the previous solution. 
If l > sub-it, then S +1S and go to step 7; otherwise l +1 l and go back to step 5. 
Step 7. Adjusting the amplitude 
In this step, exp( )0 2

SA AS


 
is used for reducing amplitude at each iteration of the outer 

cycle of the algorithm. If S>Stop return to step 8; otherwise, go back to step 4. 
Step 8. Stopping criteria 
 
In this step, the algorithm will be stopped after number of generations without improvement, 
we accepted Stop= 100. At the end, best solution is obtained. 
 
 
5.1 Representation schema 
 
In this paper, each chromosome is a production plan and each chromosome formed shown in 
Fig 1. 
 
 
5.2 Neighborhood scheme   
 
In this paper we use swap and insertion scheme, Fig 6 and Fig 7 illustrates this operation on 
second-phase with the six periods and two products. Swap and insertion are selected Roulette 
Wheel method. 

 
X126 X125 X124 X123 X122 X121 Parent 
X226 X225 X224 X223 X222 X221  

 
X126 X122 X124 X123 X125 X121 Offspring 
X226 X225 X221 X223 X222 X224  

 
Fig.6  Illustration of the swap structure 

 
 

X126 X125 X124 X123 X122 X121 Parent 
X226 X225 X224 X223 X222 X221  

 
X126 X122 X125 X124 X123 X121 Offspring 
X226 X225 X224 X221 X223 X222  

 
Fig.7  Illustration of insertion structure 
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6 Excremental Results 
 
In order to evaluate the performance of the meta-heuristic algorithms, 30 test problems with 
different sizes are randomly generated. The proposed model is coded with LINGO 8 software 
and using LINGO solver for solving the instances.  Furthermore, for the small and medium 
sized instances of two phases APP with PM, LINGO optimization solver is used to figure out 
the optimal solution and compared with GA, HS and VDO results.  
The genetic algorithm, harmony search and Vibration Damping optimization are coded in 
MATLAB R2011a and all tests are conducted on a not book at Intel Core 2 Duo Processor 
2.00 GHz and 2 GB of RAM. 
 
 
6.1 Parameter calibration        
 
Appropriate design of parameters has significant impact on efficiency of meta-heuristics. In 
this paper the Taguchi method applied to calibrate the parameters of the proposed methods 
namely GA, VDO and HS algorithms. The Taguchi method was developed by Taguchi [21]. 
This method is based on maximizing performance measures called signal-to-noise ratios in 
order to find the optimized levels of the effective factors in the experiments. The signal-to-
noise ratio refers to the mean-square deviation of the objective function that minimizes the 
mean and variance of quality characteristics to make them closer to the expected values. For 
the factors that have significant impact on signal-to-noise ratio, the highest signal-to-noise 
ratio provides the optimum level for that factor. As mentioned before, the purpose of Taguchi 
method is to maximize the signal-to-noise ratio. In this subsection, the parameters for 
experimental analysis are determined. Table 1 lists different levels of the factors for GA, HS 
and VDO.  In this paper according to the levels and the number of the factors, the Taguchi 
method L25 is used for the adjustment of the parameters. 
 
Table 1 Factors and their levels 
 

Factors Algorithms Notations Levels Values 
Population 

Size 
 npop 5 25,50,75,100,125 

Crossover 
Percentage 

GA Pc 5 0.3,0.45,0.6,0.75,0.9 

Mutation 
Percentage 

 Pm 5 0.35,0.5,0.65,0.8,0.95 

Strongly mutation 
Rate 

 mu 5 0.001,0.026,0.5,0.075,0.1 

Harmony 
memory size 

 HMS 5 5,10,15,20,25 

Harmony memory 
considering rate 

HS HMCR 5 0.7,0.75,0.8,0.85,0.9 

Pitch-adjusting 
rate 

 PAR 5 0.1,0.15,0.2,0,25,0.3 

Bandwidth  BW 5 0.2,0.5,0.8,0.9,0.99 
Max of iteration at 

each amplitude 
 sub-it 5 5,10,15,20,25 

Damping coefficient VDO   5 0.01,0.05,0.1,0.5,0.9 
Initial amplitude  A0 5 4,5,6,7,8 
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Figures 8, 9 and 10 show signal-to-noise ratios. Best level of the factor for each algorithm is 
shown in table 2. 
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Fig. 8  The signal-to-noise ratios for Genetic Algorithm 
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Fig. 9 The signal-to-noise ratios for Harmony search 
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Fig. 10 The signal-to-noise ratios for Vibration damping optimization 
 
 
Table 2 Best level for parameters 
 

Factors Algorithms Notations Values 
Population 

Size 
 npop 100 

Crossover 
Percentage 

GA Pc 0.45 

Mutation  Pm 0.5 
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Factors Algorithms Notations Values 
Percentage 

Strongly mutation 
Rate 

 mu 0.026 

Harmony 
memory size 

 HMS 10 

Harmony memory 
considering rate 

HS HMCR 0.85 

Pitch-adjusting 
rate 

 PAR 0.2 

Bandwidth  BW 0.5 
Max of iteration at 

each amplitude 
 sub-it 20 

Damping coefficient VDO   6 
Initial amplitude  A0 0.05 

 
 
6.2 Computational results 
 
Computational experiments are conducted to validate and verify the behavior and the 
performance of the genetic algorithm, harmony search algorithm and vibration damping 
optimization algorithm to solve the aggregate production planning model with preventive 
maintenance. In order to evaluate the performance of the meta-heuristic algorithms, 30 test 
problems with different sizes are randomly generated. These test problems are classified into 
three classes: small size, medium size and large size aggregate production planning problems. 
The number of products, machines and periods has the most impact on problem hardness. The 
approaches are implemented to solve each instance in five times to obtain more reliable data. 
Table 3 shows details of computational results obtained by solution methods for all test 
problems. 
 
Table 3 Details of computational results for all test problems 
 

Time(s) VDO Time(s) HS Time(s) GA Time(s) Lingo i.j.k.l.t Prob. 
size 

NO 

12.7 6720124 10.6 6720124 59.4 6720124 1 6720124 2.1.2.1.3  1 
29.2 7093831 18.2 7093831 148.4 7093831 1 7093831 2.1.2.2.3  2 
1013 7345570 32.6 7345570 527.8 7345570 1 7345570 2.1.3.2.3  3 
1987 7585061 824 7585061 1269.6 7585061 1 7585061 2.1.4.1.3  4 
18.8 7594855 13.7 7594855 96.3 7594855 3 7594855 2.2.2.1.3 Small 5 
23.7 8522935 6.5 8522935 72 8522935 3 8522935 2.1.2.1.4  6 
48.6 9939956 15.4 9939956 62.9 9939956 4 9939956 2.2.2.1.4  7 
32.4 14119881 31.2 14142746 76.8 15898457.8 6 13931320 2.1.2.1.6  8 
152.5 10386292.2 75.1 10525717.8 146.7 10599753 7 10185920 2.1.3.1.4  9 

54 12022934.6 25.8 12088009.2 113.2 12836809.6 28 11858890 2.2.2.1.5  10 
24.6 11210416 392.5 11420786 153.5 11577865.2 31 11042530 2.1.3.2.4  11 
63.8 13531169.4 74 13627122.4 72.3 15151918.4 172 12824550 2.1.2.2.5  12 
96 15176125.8 37.7 16394869.4 110.7 16870590 1035 15105320 2.1.2.2.6  13 

61.9 16560223.4 76.2 17340630.2 213.1 21703160.4 2002 16202530 2.2.2.2.6 Medium 14 
113.4 12435647 51 13750161 57.8 16684098.2 --- --- 4.1.2.1.3  15 
94.4 15010929 108.5 17321010 150.9 22298122 --- --- 3.1.2.1.5  16 
159.4 21996169.2 357.1 24351300.8 187.8 32939551.2 --- --- 4.1.2.1.5  17 
2830 11823412 2213 13170435.2 1217.3 17290025.4 --- --- 2.1.4.1.5  18 
345.6 24912403.4 105.9 27788070.6 199.1 33937574.8 --- --- 3.1.2.1.6  19 
197.6 30281600.2 493.5 36965194.4 185.9 46863855 --- --- 4.1.2.1.6  20 

2681.2 11412775.2 1439.7 19765159.2 779.7 22836542 --- --- 2.1.3.2.6  21 
235.2 18458592 149.8 30847836.2 139.8 34025305.8 --- --- 2.1.2.1.8  22 
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Time(s) VDO Time(s) HS Time(s) GA Time(s) Lingo i.j.k.l.t Prob. 
size 

NO 

81.1 15299469.4 88.8 29067560.4 124.5 31403459.8 --- --- 2.1.2.2.8  23 
42 19876372.6 114.5 31525137.6 138.3 35099474.2 --- --- 2.2.2.1.8 Large 24 

89.7 36973604.8 118.3 63658096 475.5 72024715 --- --- 2.1.2.1.12  25 
112.6 42977358.8 312.5 63231299.6 547.9 74636612.8 --- --- 2.1.2.2.12  26 
601.3 68783215.8 676.1 91273845 780.1 112933333 --- --- 3.1.2.1.12  27 
703.5 50431013.2 120.2 83846588.6 493.5 107898484.4 --- --- 2.1.2.1.16  28 
811.4 56096091.6 214 76633081 605.8 103650367.4 --- --- 2.1.2.2.16  29 
947.1 62294712.8 226.1 85097596.6 600 104470567 --- --- 2.2.2.1.16  30 

--- Means that a feasible and optimum solution has not been found after 3600 s of computing time. 
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The presented statistical analysis (the variance analysis outcome) were reported for problems 
with small, medium, and large dimensions between algorithms, in tables 4 to12 and figures 11 
to 19 , which according to the values of the survey (or P-Value), we can chose the better 
algorithm with use ANOVA related:  
 
 The objective values obtained by GA, HS and VDO are close to each other for small 

dimensions problems. 
 The objective values obtained by GA, HS, VDO are no different from each other in 

the medium dimensions test problems.  
 The objective values obtained by GA and HS are no different from each other in the 

large dimensions test problems.  
 The objective values obtained by VDO are better from GA and HS results for large 

dimensions test problems. 
 
Also Figure 20, depict comparison between solution quality of the GA, HS and VDO 
of the instances: 
 

 The GA, HS and VDO can find good quality solutions for small dimensions problems.  
 The GA, HS and VDO algorithms can solve all the test problems. 
 The objective values obtained by VDO and HS are close to each other for medium 

size problems. 
 For small dimensions test problems, the GA and HS can find good quality solutions 

but, its results will be worse when the problem size increases.  
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We can reach the conclusion that the VDO has shown its usefulness in large dimensions 
problems as compared to the GA and HS.  

 
 
Table 4 Analysis of variance for test problems with small size, between GA and HS 
 

P F0 MS DF SS Source 
0.835 
 

0.04 
 

3.32445E+11 
 

1 3.32445E+11 
 

Small size 

  7.47432E+12 
 

18 1.34538E+14 
 

Error 

   19 1.34870E+14 Total 
 
 

 
 
Fig. 11 The output of analysis of variance with small size, between GA and HS 
 

 
Table 5 Analysis of variance for test problems with small size, between GA and VDO 

 
P F0 MS DF SS Source 

0.820 
 

0.05 
 

3.93657E+11 
 

1 3.93657E+11 
 

Small 
size 

  7.42029E+12 
 

18 1.33565E+14 
 

Error 

   19 1.33959E+14 Total 
 

 
 
Fig. 12 The output of analysis of variance with small size, between GA and VDO 

 
 

Table 6 Analysis of variance for test problems with small size, between HS and VDO 
 

P F0 MS DF SS Source 
0.984 
  

0.00 
 

2584746709 
  

1 2584746709 
  

Small  
size 

  6.02647E+12 
  

18 1.08476E+14 
 

Error 

   19 1.08479E+14 Total 
 

 
 
Fig.13. The output of analysis of variance with small size, between HS and VDO 

 
 

Table 7 Analysis of variance for test problems with medium size, between GA and HS 
 

P F0 MS DF SS Source 
0.330 
 

1.00 
 

9.32566E+13 
 

1 9.32566E+13 
 

Medium size 

  9.32086E+13 
 

18 1.67776E+15 Error 

   19 1.77101E+15 Total 
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Fig. 14 The output of analysis of variance with medium size, between GA and HS 
 
 
Table 8 Analysis of variance for test problems with medium size, between GA and VDO 
 

P F0 MS DF SS Source 
0.138 
  

2.41 
  

1.94555E+14 
  

1 1.94555E+14 
 

Medium size 

  8.07301E+13 
  

18 1.45314E+15 
 

Error 

   19 1.64770E+15 Total 
 

 
 
Fig. 15 The output of analysis of variance with medium size, between GA and VDO 

 
 

Table 9 Analysis of variance for test problems with medium size, between HS and VDO 
 

P F0 MS DF SS Source 
0.563 
  

0.35 
  

1.84157E+13 
  

1 1.84157E+13 
  

Medium size 

  5.28968E+13 
  

18 9.52142E+14 
  

Error 

   19 9.70557E+14 Total 
 
 

  
Fig.16 The output of analysis of variance with medium size, between HS and VDO 

 
 

Table 10 Analysis of variance for test problems with large size, between GA and HS 
 

P F0 MS DF SS Source 
0.398 
 

0.75 
 

7.69205E+14 
 

1 7.69205E+14 
 

Large size 

  1.02792E+15 
 

18 1.85026E+16 
 

Error 

   19 1.92718E+16 Total 
 
 
 

 
 
Fig.17 The output of analysis of variance with large size, between GA and HS 
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Table 11 Analysis of variance for test problems with large size, between GA and VDO 
 

P F0 MS DF SS Source 
0.028 
 

5.69 
 

5.00468E+15 
 

1 5.00468E+15 
 

Large size 

  8.79414E+14 
 

18 1.58295E+16 
 

Error 

   19 2.08341E+16 Total 
 
 

 
 
Fig. 18 The output of analysis of variance with large size, between GA and VDO 

 
 

Table 12 Analysis of variance for test problems with large size, between HS and VDO 
 

P F0 MS DF SS Source 
0.094 
 

3.13 
 

1.84979E+15 
 

1 1.84979E+15 
 

Large size 

  5.90453E+14 
 

18 1.06282E+16 Error 

   19 1.24779E+16 Total 
 
 

 
 
Fig. 19 The output of analysis of variance with large size, between HS and VDO 

 
 

 
 
Fig. 20 Comparison between solution quality of the GA, HS and VDO 
 
 
7 Conclusion 
 
This paper is concentrated on multi-period, multi-product, multi-machine, two stage systems, 
setup decisions, return products and preventive maintenance. We have developed a mixed 
integer linear programming model that can be used to compute optimal solutions for the 
problems by an operation research solver. Due to the complexity of the problem, three meta-
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heuristics algorithms named genetic algorithm (GA), harmony search (HS) algorithm and 
vibration damping optimization (VDO) algorithm were used to solve the problem. Moreover, 
an extensive parameter setting with performing the Taguchi method was conducted for 
selecting the optimal levels of the factors that impactalgorithm’s performance. The 
computational results show that VDO the algorithm obtain good solutions for APP with PM 
problem. One straightforward opportunity for future research is extending the assumption of 
the proposed model for including real conditions of production systems such as uncertainty 
return products, uncertainty PM, etc. Also, developing new meta-heuristic algorithms to make 
better solutions can be suggested. 
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