
International Journal of Applied Operational Research
Vol. 6, No. 1, pp. 13-23, Winter 2016

Journal homepage: ijorlu.liau.ac.ir

An Approach to Increasing Reliability Using Syndrome Extension

H. Hamidi*

Received: 20 July 2015; Accepted: 10 December 2015

Abstract Computational errors in numerical data processing may be detected efficiently by using
parity values associated with real number codes, even when inherent round off errors are allowed in
addition to failure disruptions. This paper examines correcting turbo codes by straightforward
application of an algorithm derived for finite-field codes, modified to operate over any field. There are
syndromes associated with Turbo code words corrupted by large and small error values that relate
directly to the induced errors. Hence, after determining the location of a few large errors if possible,
the syndromes may be extended so as to yield these large corrupting errors along with approximations
to the prevalent low-level errors. The techniques proposed in this paper can be employed in correcting
erroneously processed data caused by soft errors.

Keywords: Security, Reliability, Syndrome, Error value.

1 Introduction

Turbo codes coupled with detection and correction procedures have found applications by
some researchers in channel and source coding systems [1-5]. Several error-correcting
methods for turbo codes were examined in these papers. Most error correction approaches
addressed a few large infrequent errors in combination with frequent low-level noise values.
In communication and source coding configurations, error correction is necessary because the
original data being conveyed are not readily available, unlike computer processing where
preprocessed data are temporarily preserved and available for re-computation. The impulsive
noise situations also arise naturally in high-performance processing where “soft errors” [6]
cause a few infrequent large values to appear in processed outputs. The extended syndromes
are subjected to an inverse DFT exposing the large error values for cleansing code words,
ultimately revealing the encoded data.

The important method of code combination known as product, this product method
produces excellent codes. Very low-rate Convolutional codes can be constructed by taking
products of binary Convolutional codes and block repetition codes. Example of codes in this
class includes turbo codes [1]. For the first time, in this paper we present methods for employ
turbo codes into systematic forms. Security techniques are most effective when applying a
systematic form. The redundancy necessary for the security method is commonly defined by
real number codes, generally of the block type [2-6]. Security introduced by K.H.Huang and
Abraham [2], was at first devoted to matrix operations on systolic arrays. It has been used to

* Corresponding Author. ()

E-mail: h_hamidi@kntu.ac.ir (H. Hamidi)

H. Hamidi

Information Technology Engineering Group, Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
14

]

 1 / 11

http://ijorlu.liau.ac.ir/article-1-497-en.html

14 H. Hamidi, / IJAOR Vol. 6, No. 1, 13-23, Winter 2016 (Serial #19)

reduce redundant hardware. Security technique is distinctive by three characteristics: (a)
Encoding the input sequence, (b) Plan again of the algorithm to act on the encoded input
sequence, (c) Distribution of the redundant computational steps among the individual
computational units in order to adventure maximum parallelism. The input sequences are
encoded in the form of error detecting or correcting codes. The modified algorithm operates
on the encoded data and produces encoded data output, from which useful information can be
recovered very easily. Obviously, the modified algorithm will take more time to operate on
the encoded data when compared to the original algorithm; this time redundant must not be
excessive. Security for arithmetic and numerical processing operations is based on linear
codes. G. Bosilca et al. [7] for high-performance computing, propose a new security method
based on a parity check coding. In [8] is the application of Low Density Parity Check based
security, it compare and analyses the use of LDPC to classical Reed-Solomon codes with
regards to different fault models. But, [8] did not provide a method for constructing LDPC
codes algebraically and systematically, such as RS and BCH codes are constructed, and
LDPC encoding is very complex due to the miss of appropriate structure. Security
methodologies used in [9] present parity values dictated by a real convolutional code for
protecting linear processing systems. Paper [10] introduces a class of Convolutional codes
which is called burst-correcting Convolutional codes; these codes provide error detection in a
continuous mode using the same computational resources as the algorithm progresses.
Redinbo [11] presented a method to Wavelet Codes into systematic forms for Algorithm-
Based Fault Tolerance applications. This method employ high-rate wavelet codes along with
low-redundancy which use continuous checking attributes to detect the errors, in this paper
since their descriptions are at the algorithm level can be applied in hardware or software. But,
this technique is suited to image processing and data compression applications and is not a
general method. Also, other constraint is on burst-error due to computational load high
relatively. Moreover, there is onerous analytical approach to exact measures of the detection
performances of the security technique applying wavelet codes.

We make the following contributions in this paper: In section 2, we discuss our block
diagram of the security technique. In section 3, we propose the usage of codes, turbo codes for
security technique. In section 4, we discuss the simulations and results. In section 5,
discussion of the conclusions.

2 Security Schemes

For error correction purposes, redundancy must be inserted in some form and, using the
security, turbo parity codes will be employed. A systematic form of turbo codes is especially
profitable in the security detection plan because no redundant transformations are needed to
achieve the processed data after the detection operations. To achieve fault detection and
correction properties of turbo code in data processing with the minimum additional
computations, we propose the block diagram in Fig 1. This figure summarizes a security
technique employing a systematic turbo code to define the parity values. The k is the basic
block size of the input data, and n is block size of the output data, new data samples are
accepted and (n - k) new parity values produced.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
14

]

 2 / 11

http://ijorlu.liau.ac.ir/article-1-497-en.html

An Approach to Increasing Reliability Using Syndrome Extension 15

Fig. 1 Block diagram of the security technique

The upper way, Fig. 1, is the Process data flow which passes through the process block (data
processing block) and then fed to the turbo encoder (parity regeneration) to make parity
values. On the other hand, the comparable parity values are generated efficiently and directly
from the inputs, parity and processing combined, without producing the original outputs. The
security method detects errors whenever these two parity values do not compare within a
tolerance threshold. The difference in the comparable two parity values, which are computed
in different ways, is called the syndrome; the syndrome sequence is a stream of zero or near
zero values. The turbo code’s structure is designed to produce distinct syndromes for a large
class of errors appearing in the processing outputs. Fig. 1 employs turbo code parity in
detecting and correcting processing errors.

3 Turbo Code
3.1 Turbo Encoder

Early Most of the researchers tend to focus on methods are structured, such as RM and BCH
codes with very strong algebraic structures, or topological, such as Convolutional codes [12].
Anyway, structures does not always result in the best distance properties for code, and can be
produced very complex operations. Special types of Convolutional codes, called recursive
systematic Convolutional codes (RSC), are used as the building blocks of a turbo code
encoder, Fig.2 (a). The basic turbo code encoder is built using two identical recursive
systematic Convolutional (RSC) codes with parallel concatenation [1]. The two component
encoders are separated by an interleaver, only one of the systematic outputs from the two
component encoders is used, because the systematic output from the other component encoder
is just a permuted version of the chosen systematic output, Fig. 2(b). A turbo code encoder
with two component codes is shown in the Fig. 2(b).

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
14

]

 3 / 11

http://ijorlu.liau.ac.ir/article-1-497-en.html

16 H. Hamidi, / IJAOR Vol. 6, No. 1, 13-23, Winter 2016 (Serial #19)

(a)

(b)

Fig. 2 (a) Block diagram of the generalized turbo encoder, (b) Block diagram of the Two-Component Turbo
Encoder

In the general case, the code consists of two parts: the un-coded input values and a set of
parity sequences generated by passing interleaved versions of the information bits through
Convolutional encoders. Typically, the encoders used are Recursive Systematic encoders;
also, in most turbo codes the encoders used are the same (making the Turbo code symmetric),
and two sets of parity values are used, one which is generated from the non-interleaved data
sequence, and one which is generated from an interleaved sequence. This structure is shown
schematically in Fig. 2(b). The parity values are usually punctured in order to raise the code
rate to, R=k/n, 1/2. The data sequence may or may not be terminated, usually depending on
the kind of interleaver used. We will assume that the input sequence contains k input values
and is represented by X (0).

The number of data carrying symbols is denoted by K, implying that there are (N-K)
parity symbols associated with an (N, K) turbo code. The minimum Hamming distance of an
(N, K) turbo code is (N-K+1) indicating an error-correcting capability of

[(N-K+1)/2]. (1)

The turbo is defined through an N.N matrix  and it is identified by selecting (N-K)
consecutive rows of  as a parity check matrix H, (N-K)N. A complex vector v, N1, is a
codeword if and only if 0 Hv; 0, (N-K)1 all zeros.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
14

]

 4 / 11

http://ijorlu.liau.ac.ir/article-1-497-en.html

An Approach to Increasing Reliability Using Syndrome Extension 17

The processed, transmitted or stored data are contained in a codeword r1which may be
affected by errors due to computer operations, noisy transmission or storage. The disruptive
influences may impact all N components of r1, and also just a few values drastically. The
corruption may be modeled by adding random vectors to r1.The observed, corrupted
codeword will be denoted by , N1. The corrupted codeword is defined through

1 2 3r r r    (2)

The N components of r3represent low-level noise while those in r2are a few nonzero
components modeling the impulsive noise, the infrequent, large disruptive values. The low-
level noises in r3are Gaussian with uncorrelated components, zero-mean and small
variances 2 . On the other hand, the components of r2obey a Gaussian process in which each
element r2iis nonzero with small probability p and accordingly zero with probability (1-p).
When a nonzero element r2iappears, its numerical value follows a zero-mean, larger
variance 2 , Gaussian law. The components of r2and r3are assumed statistically
independent among and between elements. The first step towards correction is detecting
errors, particularly large errors modeled in vector r2. The syndromes

1 2

2 3

(, ,...,) ,

()

T
N KS S S S

S H r r



 
 (3)

associated with the parity check matrix H (and forward transform) provide a window on the
errors appearing in an observed possibly corrupted codeword . Note

1. 0H r  (4)

A reasonable test for determining if any nonzero components of r2have occurred is to
examine the mean-squared value of each component of S. If any computed mean square
syndrome value exceeds a threshold , an error detection is declared.

2
iS E (5)

The threshold  will be taken as a multiple M times the square-root of the statistical mean-
squared expectation when there are only low-level errors in r2;

2. .E M N  (6)

3.2 Iterative Turbo Code Decoder

In this paper, the turbo code decoder is based on a modified Viterbi algorithm that includes
reliability values to improve decoding performance. The Viterbi algorithm produces the
majority logic (ML) output value for Convolutional codes. This algorithm provides optimal
sequence estimation for one stage Convolutional codes. For concatenated Convolutional

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
14

]

 5 / 11

http://ijorlu.liau.ac.ir/article-1-497-en.html

18 H. Hamidi, / IJAOR Vol. 6, No. 1, 13-23, Winter 2016 (Serial #19)

codes, there are two main disadvantages to conventional Viterbi decoders. First, the inner
Viterbi decoder produces bursts of bit errors which reduce the performance of the outer
Viterbi decoders [13-15]. Second, the inner Viterbi decoder produces hard decision outputs
which prevent the outer Viterbi decoders from deriving the advantage of soft decisions [16-
19]. Both of these drawbacks can be reduced and the performance of the overall concatenated
decoder can be improved if the Viterbi decoders are able to produce reliability (soft-output)
values [20]. The reliability values are passed on to subsequent Viterbi decoders as apriority
information to improve decoding performance. The Viterbi algorithm was modified to output
bit reliability information [22]. The soft-output Viterbi algorithm (SOVA) computes the
reliability of the input values as a log-likelihood ratio (LLR),




















]r|0XPr[

]r|1XPr[log)X(-
(0)

-
(0)

(0) (7)

where r denotes the received sequence. In an iterative decoding procedure, the output
information provided by)X((0)

,ei can be fed back to the decoder as a priori probability for a

second round of decoding. The output LLR can be written as, Let D)(j
i be the set of branches

connecting state S)(
1

l
i

 to state S)(l

i such that the associated information bit (0)X =j, with j{0,

l}.































)(),()(

)(),()(
log)X(

)1(),(

'
1

)0(),(

'
1

(0)
,

'

'

llll

llll

ii
Dll

i

ii
Dll

i

ei

i

i




 (8)

where)('

1 li ,)(li and),(lli  are given by

)(li =Pr{S)(l
i , ir } (9)

)(li = Pr { ir | S)(l
i } (10)

),(lli  = 






1

1
,,

0

)exp().(
n

m
mimiij xr

N
Ell (11)

where

()1 , (,)
(.)

0

j
i

ij
if l l D

l l
else


   


 (12)

This output LLR, for an information position i, does not contain any variable directly related
to X i

(0), for i = 1, 2, . . ., N. It should be noted that because of the assumption that encoding is
systematic, and therefore the sum in the modified branch metric (11) starts at m = 1. In the

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
14

]

 6 / 11

http://ijorlu.liau.ac.ir/article-1-497-en.html

An Approach to Increasing Reliability Using Syndrome Extension 19

more general case of a two-dimensional product coding scheme, the first decoder produces
)X((0)

,
)1(

ei which is given to the second decoder as a priori probability)X((0)
,

)2(
ei to be used

in the computation of the LLR of input values X i
(0). In other words, the output information

provides a soft output that involves only reliabilities that are not directly related to the
information symbol X i

(0). The operation of the Turbo decoder is shown in Fig. 3, [21-22],
each iteration consists of two phases, one decoding phase per component decoder. First phase,
In the first decoding iteration the soft-in soft-out decoder for the first component code
computes the a posteriori LLR ,(8).This decoder computes the extrinsic information for each
information symbol,)X((0)

,
)1(

ei , on the basis of the part of the received sequence that
corresponds to the parity symbols, 1pr , and sends the result to the second decoder.

Fig. 3 Two-Component Turbo Decoder

In the second phase of the first decoding iteration, the permuted (or interleaved) output
information from the first decoder is used as a priori LLR,  .)X((0)

,
)1(

ei . Extrinsic
information)X((0)

,
)2(

ei is computed on the basis of the part of the received sequence that

corresponds to the parity values of the second component code, 2pr , thus conclude the first
decoding iteration. At this point, a decision can be made on an information symbol, on the
basis of its a posteriori LLR)X((0)

,ei . In subsequent iterations, the first decoder uses the de
interleaved extrinsic information from the second decoder, 1 .)X((0)

,
)2(

ei , as a priori LLR
for the computation of the soft-output (the a posteriori LLR),)X((0)

,ei . This procedure can
be repeated until either a stopping criterion is met [23-24] or a maximum number of iterations
is performed. It should be noted that making decisions on the information symbols after the
first decoder saves one deinterleaver.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
14

]

 7 / 11

http://ijorlu.liau.ac.ir/article-1-497-en.html

20 H. Hamidi, / IJAOR Vol. 6, No. 1, 13-23, Winter 2016 (Serial #19)

4 Simulations and Results

A detailed stochastic analysis of the correcting methodology espoused in the previous section
seems quite intractable. Extensive simulations employing MatLab scripts are used to evaluate
the probability of error and mean-squared error performances of a few selected turbo codes,
all triple error-correcting type of high rate, relatively long. The scripts allow separating error
influences that impact error-correcting procedures. The sum of squares of the syndromes
guides the detection of possible errors. The algorithm follows the methods given earlier
including adjusting the roots of the error-modeling polynomial, the nonlinear step. The
MatLab code makes comparisons of possibly corrected code words and counts any improper
corrections or undetected small errors. All turbo codes simulated are of the turbo codes so that
the results are similar to types in other earlier papers, even though most of them were of much
shorter length. The probability of code word error curves are shown in Fig. 4 for various large
excursion probabilities p and for two quite high standard deviations of the low level noise;

41 0  and 21 0  . The theoretical value of no coding employing N=25 data symbols,
which is (1 (1))Np  , is displayed in the upper part of each plot. The upper panel of Fig. 4
for shows a coding gain for the (32, 25) and (39, 32) codes while at the higher values of p, the
overload effects of long codes are demonstrated, particularly for the (50, 43) code.

(a) (b)

Fig. 4 Probability of code word error for three turbo type codes. (a) Low level noise, standard deviation
410  . (b) Low level noise, standard deviation 210  .

The curves are not smooth at the lower end of the p range because fewer errors are
encountered for averaging purposes. When the low level noise becomes more serve with
standard deviation 21 0  , all codes show degradation for the larger values of p. The mean-
squared errors between input code word symbols and those in the corrected code words are
computed for high deviations of the low level noise with 41 0  . Those results are shown in
Fig. 5. The effects of overloaded code word correction by the Bernoulli-Gaussian model is
visible for the longest code (50, 43). The impact of low level noise on the recursive extension
process is examined in the simulations by determining sample means and variances of the low
level processes and their extensions. The simulations easily isolate the low level noise
processes and their sample means and variances are evaluated. Both the input processes and
the output of the extension operations should have zero means. Fig. 6 shows the average
mean-squared error values for the coded and unprotected systems. The scales are both

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
14

]

 8 / 11

http://ijorlu.liau.ac.ir/article-1-497-en.html

An Approach to Increasing Reliability Using Syndrome Extension 21

logarithmic. There is very little change in the error levels when activity probabilities change
0.005 from to 0.05. However, the improvement in the average mean-squared error for the
coded system varies from three to four orders of magnitude better than the unprotected levels.

Fig. 5 Probability of codeword error for three codes.

Fig. 6 Sample average mean-squared error real number (71, 64) code (a) Average mean-squared error for
activity factor 0.005. (b) Average Mean-squared error for activity factor 0.05

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
14

]

 9 / 11

http://ijorlu.liau.ac.ir/article-1-497-en.html

22 H. Hamidi, / IJAOR Vol. 6, No. 1, 13-23, Winter 2016 (Serial #19)

5 Conclusion

Straightforward error correction of turbo codes employing for large error location followed by
syndrome extension is a reasonable approach for high rate codes facing small, large error
probabilities. This leads to error value computations by extending the starting syndromes
through a recursive evaluation, a linear feedback shift register type computation. The low
level interferences perturb the error location procedures more than the extension operations.
Simulations show that the sample variances of the low level noise effects riding on the true
error value evaluations have small variances, one or two orders above those of the noise
variances alone. Such decoding methods can be appropriate for certain error regions when
employing turbo codes.

For future work, the problem of interleaver design for punctured codes also necessitates
an appropriate interleaver optimisation. Some work has already been done on punctured
codes, particularly indicating the usefulness of an odd-even interleaver structure. Modification
of the simulated annealing algorithm to create odd-even interleavers is trivial1, and should
provide a preliminary design strategy. The effect of trellis termination on punctured codes
needs to be investigated, particularly for small block sizes.

References

1. Berlekamp, E. R. (1962). A Class of Convolution Codes. Information and Control, 6, 1-13.
2. Berrou, C., Glavieux, A., Thitimajshima, P., (1993). Near Shannon limit error-correcting coding

and decoding: Turbo-codes. In Proceedings of the IEEE International Conference on
Communications, 2, 1064–1070.

3. Hagenauer, J., Hoher, F., (1989). A Viterbi Algorithm with Soft-Decision Outputs and Its
Applications. Proc. 1989 IEEE Global Teleconim Con & (GLOBECOM’89). 47.1.1- 47.1.7,
Dallas, Texas.

4. Chen, Z., (2008). Extending Algorithm-based Fault Tolerance to Tolerate Fail-stop Failures in
High Performance Distributed Environments. Proceedings of the 22nd IEEE International Parallel
& Distributed Processing Symposium, DPDNS'08 Workshop, Miami, FL, USA, April 14-18.

5. Costello, D., Lin, S., (2004). Error Control Coding Fundamentals and Applications. 2nd edition,
Pearson Education Inc., NJ, U.S.A.

6. El Gamal, H., Hammons, A. R., Jr. (2001). Analyzing the turbo decoder using the Gaussian
approximation. IEEE Transactions on Information Theory, 47, 671–686.

7. Bosilca, G., Delmas, R., Dongarra, J., Langou, J., (2009). Algorithm-based fault tolerance applied
to high performance computing. Journal of Parallel and Distributed Computing, Elsevier, 69(4),
410-416.

8. Hagenauer, J., Offer, E., Papke, L., (1996). Iterative decoding of binary block and convolutional
codes. IEEE Trans. Inform. Theory, 42, 429-445.

9. Hamidi, H., Vafaei, A., Monadjemi, A. H., (2009). Algorithm based fault tolerant and
checkpointing for high performance computing systems, J. Applied Sci., 9, 3947-3956.

10. Hamidi, H., Vafaei, A., Monadjemi, S. A., (2012). Analysis and Evaluation of a New Algorithm
Based Fault Tolerance for Computing Systems. International Journal of Grid and High
Performance Computing (IJGHPC), 4(1), 37-51. doi:10.4018/jghpc.2012010103

11. Redinbo, G. R. (2010). Wavelet Codes for Algorithm-Based Fault Tolerance Applications. IEEE
Transactions on Dependable and Secure Computing, 7, 3, pp. 315-328.

12. Huang, K. H., Abraham, J. A., (1984). Algorithm-based fault tolerance for matrix operations,
IEEE Transactions on Computers, C-33, 518-528.

13. Massey, J. L., (1965). Implementation of Burst-Correcting Convolutional Codes. IEEE Trans.
Information Theory, 11, 416-422.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
14

]

 10 / 11

http://ijorlu.liau.ac.ir/article-1-497-en.html

An Approach to Increasing Reliability Using Syndrome Extension 23

14. Morelos-Zaragoza, R. H., (2006). The Art of Error Correcting Coding. 2nd Edition, John Wiley &
Sons, ISBN: 0470015586.

15. Proakis, J. G., (2001). Digital Communications. 4th Edition. New York: McGraw Hill.
16. Redinbo, G. R., (1998). Generalized Algorithm-Based Fault Tolerance: Error Correction via

Kalman Estimation. IEEE Transactions ON Computers, 47(6).
17. Redinbo, G. R., (2003). Failure-Detecting Arithmetic Convolutional Codes and an Iterative

Correcting Strategy. IEEE Transactions on Computers, 52(11), 1434-1442.
18. Hamidi, H., Vafaei, A., Monadjemi, S. A., (2011). A framework for ABFT techniques in the

design of fault-tolerant computing systems. EURASIP Journal on Advances in Signal Processing
2011:1, 90. Online publication date: 1-Jan-2011.

19. Roche,T., Cunche, M., Roch, J. L., (2009). Algorithm-Based Fault Tolerance Applied to P2P
Computing Networks. ap2ps, 2009 First International Conference on Advances in P2P Systems,
144-149.

20. Sadjadpour, H., Sloane, N., Salehi, M., Nebe, G., (2001). Interleaver design for turbo codes. IEEE
Journal on Selected Areas in Communications, 19, 831-837.

21. Snasel, V., Platos, J., Kromer, P., Ouddane, N., (2008). Genetic Algorithms Searching for Turbo
Code Interleaver and Solving Linear Ordering Problem. Cisim, 2008 7th Computer Information
Systems and Industrial Management Applications, 71-77.

22. Viterbi, A. J., Omura, J. K., (1985). Principles of Digital Communication and Coding. Mc-
Grawhill , 2-nd Print.

23. Wu, P. H. Y., (2001). On the complexity of turbo decoding algorithms. In Proceedings of the
IEEE Vehicular Technology Conference-Spring, 2, 1439–1443.

24. Zhang, C. N., Liu, X. W., (2009). An algorithm based mesh check-sum fault tolerant scheme for
stream ciphers. International Journal of Communication Networks and Distributed Systems, 3(3),
217-233.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n
20

25
-0

7-
14

]

Powered by TCPDF (www.tcpdf.org)

 11 / 11

http://ijorlu.liau.ac.ir/article-1-497-en.html
http://www.tcpdf.org

