
International Journal of Applied Operational Research 
Vol. 6, No. 2, pp. 57-74, Spring 2016 
  
Journal homepage: ijorlu.liau.ac.ir 

 
An Efficient Imperialistic Competitive Algorithm for Closed-loop 
Supply Chains Considering Pricing for Product and Fleet of 
Heterogeneous Vehicles 
 
M. Mohammadnejad*, I. Nakhai Kamalabadi, R, Sadeghian, F. Ahmadizar 
 
 
 
Received:  25 September 2015  ;      Accepted: 22 February 2016 
 
 
Abstract This study investigates multi-period pricing closed-loop supply chains (CLSCs) with two 
echelons of producers and customers. Products delivered to customers might be defective which would 
be picked up and gathered in the collection center and fixed if it is possible and returned to the chain. 
Otherwise, they will be sold as waste materials. This problem determines the price and distribution of 
the product, supply of the material, and also determines vehicles with simultaneous pick-up and 
delivery in order to maximize the profit. A fleet of heterogeneous vehicles was routed to deliver the 
products from producers to customers and to pick up defective products from the customers and 
shipped them to the collection-repair center. The objective function was the maximization of the 
profit. Total cost consisted costs of defective products, ordering cost, the cost of holding in producers 
and collection-repair center, transportation costs, and the cost of assigning the place for the collection-
repair center. This problem has been known as Np-hard; therefore, two meta-heuristic algorithms 
namely genetic algorithm (GA) and imperialist competitive algorithm (ICA) have been applied to 
solve the randomly generated test problems. Computational results revealed that GA was statistically 
better than ICA based on RPD metric reaching solutions with high quality. 
 
Keyword: Closed-loop supply chain, Heterogeneous vehicles routing, Inventory, Pricing, Genetic 
algorithm (GA), Imperialist competitive algorithm (ICA). 
 
 
1 Introduction 
 
The supply chain is the movement of the created materials or products through different 
processes and activities on the network of organizations with the upstream and downstream 
connections to reach the end customers [1]. Supply chain Management is to optimize the 
performance of the chain by linking all the supply chain parties to jointly cooperate within the 
firm so that the total cost of the chain minimizes, or on the other hand productivity in the 
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supply chain maximizes. Since the 1980s, the applications of the supply chain management in 
different industries have increased significantly. A comprehensive survey of supply chain 
management literature was performed by Cousins et al. [2, 3]. Recently, many researchers 
focused on issues of environmental protection and also the economic advantages of using 
returned goods. Due to these studies, they have achieved significant success in designing and 
executing reverse logistics networks and closed-loop supply chain networks [4, 5]. A forward 
supply chain includes the movement of services and goods from raw material suppliers, to 
manufacturers and assemblers, to retailers and end-consumers linked by shipping and storage 
processes [6]. In a closed-loop supply chain, the reverse flow of products contains after-sale 
activities and issues for recovery, recycling or safe disposal of the used products [7, 8]. The 
structure of closed-loop supply chain network is categorized into four types including the 
reuse, remanufacturing, recycling, and business returns. By growing public awareness about 
the supply chain environmental potentials, initial attempts for closing the loop of the supply 
chain has been initiated [9, 10]. Many companies found that mixing activities of closed-loop 
supply chain not only reduces the environmental impact but leads to reduced cost and 
increased productivity by providing services and new products which are achieved from 
recycling products. 

The study is organized as follows. Section 2 gives the literature review of a closed-loop 
supply chain. Section 3 describes the problem and the related assumptions. Section 4 consists 
of the proposed algorithms for finding good solutions. Section 5 reports data generation and 
computational results. Finally, section 6 presents the conclusions and directions for future 
research. 

 
 

2 Review of the Related Literature 
 
Some researchers investigated the main forces of three industry parts including automotive, 
consumer, and electronic appliances [11]. The main aim was to close the supply chain loop in 
the product lifecycle. Four generic recycling options (recycling with or without disassembly 
in combination with outsourcing recycling or active intercommunity in recycling processes) 
and their effects were explored by Pagell et al., [12]. They identified existing recycling 
options to managers and their strategic implications. Hsu et al., [13] explored the business 
activities of distribution centers to estimate the business process of reverse logistic. Also, a 
model was developed to survey the interactions and data exchanges between different 
elements of the reverse logistics process. Rubio et al., [14] conducted a case study on the steel 
industry in Spanish. They presented a new packaging system which may be recovered via a 
reverse logistics system. Moreover, the economic and environmental advantages of the 
proposed system have been indicated. Concentrating on the Spanish automotive sector, 
barriers to the implementation of environmentally oriented reverse logistics were investigated 
by González et al., [15]. Using empirical evidence and robust statistical analysis, 
classification, and estimation barriers to environmentally oriented reverse logistics was done. 
For the first time, Halabi et al., [16] studied reverse logistic practices in Colombian 
enterprises especially in the plastic sector. They provided several conceptual models for the 
enterprises under study. After analysis of the obtained results, suggestions to reduce a 
negative impact on the environment were provided. A closed-loop supply chain network 
design under uncertainty and risk conditions were considered by Pishvaee and Torabi [17]. 
They formulated the problem as a bi-objective possibility mixed integer programming model 
and presented an interactive fuzzy solution method for solving the proposed possibility 
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optimization model. In the presented solution approach, several efficient solution methods 
were combined. Pishvaee and Razmi [18] provided a multi-objective fuzzy optimization 
model for environmental supply chain network design under inherent uncertainty of input 
data. The objective functions were the minimization of the traditional cost and the multiple 
environmental impacts. For assessing and quantifying the environmental impact of different 
scenarios, a life cycle assessment-based method was used. Furthermore, they presented an 
interactive fuzzy solution approach to solve the problem. Pishvaee et al., [19] considered the 
problem of sustainable medical supply chain network design under epistemic uncertainty of 
input data. They presented a multi-objective possibility programming model for the proposed 
problem with conflicting economic, environmental and social objectives. An accelerated 
Benders decomposition algorithm with three acceleration mechanisms was used for solving 
the proposed model. Wei et al., [20] concentrated on a closed-loop supply chain with 
symmetric and asymmetric information structures for which the game theory was used for 
making the decisions on pricing and collecting. The aim was to make optimal decisions about 
wholesale price, retail price, and collection rate for the manufacturer and the retailer under 
symmetric and asymmetric information conditions. Four different game decision scenarios 
were provided to study the strategies of each company and the role of the manufacturer and 
the retailer in these scenarios. He [21] studied on acquisition pricing and remanufacturing 
decisions in a closed-loop supply chain with a manufacturer and recycle and reliable supply 
channels. The proposed problem was considered for two cases: with deterministic demand 
and with the stochastic demand. Also, two recycle channels for closed-loop supply chain were 
examined: the centralized (integrated) recycle channel and the decentralized recycle channel. 
A closed-loop supply chain network design operating in a competitive environment and with 
price-dependent demand was presented by Rezapour et al., [22]. They investigated the 
impacts of strategic facility location decisions of the studied supply chain on the 
tactical/operational transport and inventory decisions and formulated the proposed problem as 
a bi-level mathematical model. Also, they presented a modified projection solution approach 
for solving the proposed problem.  Dondo et al., [23] studied a multi-echelon vehicle routing 
problem with cross docking in supply chain management. The aim was to satisfy customer 
demands at a minimum total transportation cost. They formulated the proposed problem as an 
integrated mixed-integer linear mathematical formulation and examined it for several problem 
instances. Agustina et al., [24] focused on food supply chains and studied vehicle scheduling 
and routing at a cross-docking center. The objective has been to deliver food just on time and 
with minimum costs of delivery. These costs contain inventory holding and transportation 
costs and the penalty costs due to early or tardy deliveries. They provided an integrated 
mixed-integer linear programming model for the proposed problem and solved it in CPLEX. 
Two-level vehicle routing with cross-docking in a three-echelon supply chain was studied by 
Ahmadizar et al., [25]. they formulated the problem as a mixed-integer nonlinear 
programming model. The objective function was to determine the optimal allocation of 
products to suppliers and cross-docks, the optimal scheduling, and routing of vehicles and to 
consolidate products so that the sum of the acquiring, transportation and holding costs is 
minimized. They presented a hybrid genetic algorithm for solving the problem. Hu et al. [26] 
considered a dynamic closed-loop vehicle routing problem under the uncertain pickup and 
deterministic delivery of incompatible goods where incompatibility between collected goods 
and goods for delivery has occurred. For measuring incompatibility, two strategies were 
presented. In the first strategy, the quantities of the goods to be collected and delivered were 
considered and in the second strategy, the vacant vehicle capacity based on the first strategy 
was considered. The aim was to minimize transportation cost, incompatibility and number of 
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customers visited twice. They presented a solution approach based on variable neighborhood 
search algorithm for solving the proposed model. For showing the effects of considering the 
incompatibility, a case study in China’s catering industry was conducted. 
 
 
3 Statement of the Problem 
 
In this Study, we consider multi-period, Closed-Loop Supply Chains (CLSCs) with two 
echelons consisting of producers and customers. In order to fulfill the demands, the producers' 
order for the materials at the beginning of each period and repeats for one or more periods. A 
fleet of heterogeneous vehicles is routed in order to deliver the products from producers to 
customers. They also pick up defective products from the customers and move them to the 
collection-repair center. The objective is the maximization of the profit, which comes from 
the total cost that is subtracted from income. The problem is elaborated by the following 
assumptions. Figure 1 illustrates the proposed problem. 

 
Fig. 1 Illustration of the presented problem. 
 
 
3.1 Assumptions 
 

 The problem is planned for the horizon of several periods. 
 The chain consists of two echelons of producers and customers. 
 The manufacturer can order for materials at the beginning of each period.  
 Defective products are picked up from the customers and transported to the collection-

repair center. 
 The collection-repair center is placed in one of the several potential locations. 
 Defective products might be returned to the distribution system in the next period or 

sold as a waste.  
 The rate of defective products is related to the price; in other words, the more 

expensive the products, the less rate of the defect. 
 Transportation between the manufacturer and the customer is directed, and at most, a 

vehicle is assigned to each pair of them. 
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 In order to pick up the defective products, a vehicle is sent to the customers in every 
period. The vehicle can also deliver repaired products to them after the first period. 

Indices, parameters, decision variables, mathematical model, objective function, and 
constraints are presented as follows: 
 
 
3.2 Indices 
 
S: Set of manufactures 
N: Set of locations containing collection-repair potential centers (Set L, n first nodes of N 
nodes) and customers (Set C, N-n remaining nodes) 
V: Set of vehicles 
T: Set of planning periods 

 
  

3.3 Parameters 
 
n: Number of candidate potential locations for establishing the collection-repair center. 
 : Rate of defective products; it is dependent on the price. 
 : Price of products with highest quality 
 : Rate of defective products that can be repaired. 

jFP : Fixed cost for establishing the collection-repair center in node j 

lFV : Fixed cost of vehicle l 

lDV : Unit shipping cost of vehicle l 

lCV : Capacity of vehicles l 

tPt : Price of un-repairable defective product at period t 

tCR : Unit cost of repair at period t 

jt : Mean demand, which is independent from price for customer j at period t  

jt : Rate of price-dependent demand of customer j at period t 

kth : Unit storage cost in location k at period t 

itA : Ordering cost for manufacturer i at period t 
itPb : Material cost of each unit of product for manufacturer i at period t 

ith : Unit storage cost in the warehouse of manufacturer i at period t 

ijDist : Distance between nodes i and j 
M : An arbitrary large number  

 
 

3.4 Decision Variables 
 

tLR : Amount of loading of the vehicle when it leaves the collection-repair center  

tPs : Sales price of the product at period t 

tRW : Number of products repaired at period t 
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jtW : Auxiliary variables in order to eliminate sub-tours in node i at period t 

jtDE : Demand of customer j at period t 

jtD : Amount of repaired products delivered to customer j at period t 

jtP : Amount of backward defective products from customer j at period t 

jtLC : Amount of vehicle loading at the time before leaving customer j at period t 

ktI  : Amount of warehouse inventory in location k at period t 

itI : Amount of warehouse inventory in manufacturer i at period t 

itQ : Amount of ordering of manufacturer i at period t 

ijltX : Amount of product moved from manufacturer i to customer j by vehicle l at 
period t 

jZ : 
1    if the collection-repair center is opened in location j 
0                                                                              else


  

jtB :
1   if costomer i at period recieves repaired product or has backward 
0                                                                                                    else




 

itO :
1, if manufacturer  i orders for material at period t
0                                                                       else




 

1, if vehicle l is used for transfering the products from manufacturer i to customer j at period t
0                                                                                             

:
  ijltV

                                            else




 

ltV  :
1, if vehicle l is used in the collection-repair center at period t 
0                                                                                        else




 

jkltY :
1, if vehicle l traveles from node j to k at period t  
0                                                                     else 




 

 
 
3.5 Mathematical Model 

 jt t jt t t t
t T j C t T j C t T

it it it it it it kt kt
t T i S t T i S t T i S t T k L

ijlt l lt l
t T l V i S j C t T l V

ijlt l ij jklt l
t T l V i S j C

MaxZ DE Ps P RW Ps Pt

O A Pb Q I h I h

V FV V FV

X DV Dist Y DV Dis

    

       

     

   

 
    

 
    

 

 

  

   

 

 jk
t T l V j N k N

k l jt t
k L t T j C

t

Z FP RW RC
   

  

 



 

                                                           (1) 

s.t.  
     ,  jt jt jt tDE Ps j C t T      (2) 
+1     ,  jt jt jt tDE Ps j C t T       (3) 
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     ,  jt ijlt jt
l V i S

D X DE j C t T
 

     (4) 

1      ,  it it it ijlt
l V j C

I I Q X i S t T
 

      (5) 

     ,  it itQ O M i S t T    (6) 
     ,  ,  ,  ijlt ijlt lX V CV i S j C l V t T      (7) 

(1 )      ,  t
jt ijlt

l V i S

PsP X j C t T
  

      
 

  (8) 

(1 ) +1     ,  t
jt ijlt

l V i S

PsP X j C t T
  

      
 

  (9) 

    ,  jt jtP B M j C t T    (10) 
    ,  jt jtD B M j C t T    (11) 

     ,  jklt kt
l V j N

Y B k C t T
 

    (12) 

' ''
' ''

     ,  ,  j jlt jj lt
j N j N

Y Y j N l V t T
 

      (13) 

       jj k n lt
t T l V k C

Y Z M j L
  

   (14) 

     ,  jklt lt
j N k N

Y V M l V t T
 

    (15) 

1j
j L

Z


  (16) 

(1 )      ,  ,  ,  kt jt jkltw w Y M j N k C l V t T        (17) 

  1     ,  j k n lt
l V k C

Y j L t T
 

    (18) 

     t jt
j C

RW P t T


   (19) 

+1     t jt
j C

RW P t T


 
  

 
  (20) 

1      ,  kt kt t jt
j C

I I RW D k L t T


       (21) 

1 (1 )      ,  jt kt k
j C

D I Z M k L t T


      (22) 

     t jt
j C

LR D t T


   (23) 

 (1 )      ,  ,  kt t kt kt j k n ltLC LR D P Y M k C j L t T         (24) 

 (1 )      , ,  kt kt kt kt j k n ltLC LC D P Y M j k C t T        (25) 
(1 )      ,  t l ltLR CV V M l V t T      (26) 
(1 )      ,  ,  kt l ltLC CV V M k C l V t T       (27) 

 0,1      jZ j L   (28) 

  0,1      , ,  ,  jkltY j k N l V t T     (29) 

  0,1      jtB j C   (30) 
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 0,1      jtO j C   (31) 

 0,1      ,  ,  ,  ijltV i S j C l V t T      (32) 

 0,1      ,  ltV l L t T     (33) 
, ,  are integer     ,  jt jt tDE P RW j C t T   (34) 

 
 
3.6 Describing the Objective Function and Constraints 
 
The objective function of the proposed mathematical model is to maximize profit. Profit is 
calculated from the total cost subtracted from the income. All the income comes from selling 
the products. However, cost function includes nine parts, which are waste cost (including the 
products that are sold as waste), ordering cost, material purchasing cost, storage cost in the 
manufacturers’ places, storage cost in the collection-repair center, fixed cost of employing 
vehicles, travelling cost that is dependent on distance, establishing cost of the collection-
repair center, and repair cost of the defective products. Constraints (2) and (3) represent the 
amount of demand of customers at the beginning of each period, which is dependent on the 
price. Constraint (4) ensures that the demand of each customer should be satisfied at each 
period. Constraint (5) calculates the amount of inventory of each manufacturer at each period. 
Constraint (6) ensures that a manufacturer can only order for materials when the ordering has 
been completed. Constraint (7) ensures the vehicles not to load more that their capacities. 
Constraints (8) and (9) calculate the number of backward products of each customer at each 
period that is dependent on the price. Constraints (10) and (11) determine if each customer 
requires a vehicle from the collection-repair center. Constraint (12) guarantees that the 
vehicles from the collection-repair center only meet the customers that need to be repaired 
products to be delivered or defective products to be picked up. Constraint (13) guarantees that 
if a vehicle enters a node in a period, it should leave it immediately after its mission is 
finished. Constraint (14) ensures that at the first of each period, a vehicle only comes out of 
the location in which the collection-repair center has been established. Constraint (15) 
illustrates the types of vehicle used at the collection-repair center in each period. Constraint 
(16) ensures that only one location must be selected as the collection-repair center. Constraint 
(17) eliminates sub-tour elimination constraint and ensures that no route is apart from the 
distribution center node. Constraint (18) ensures that each vehicle cannot travel more than one 
time at each period. Constraints (19) and (20) determine the number of repaired products in 
each period. Constraint (21) calculates the inventory level in the collection-repair center at 
each period. Constraint (22) shows the number of backward for each customer at each period. 
Constraint (23) calculates the loading amount of each vehicle when leaving the collection-
repair center at each period. Constraint (24) calculates the loading amount of every vehicle 
when leaving the first customer after the collection-repair center through its route. Constraint 
(25) calculates a load of each vehicle when leaving each customer in its route. Constraints 
(26) and (27) ensure that the loading level never exceeds the capacity of the vehicle. Finally, 
constraints (28) and (34) show the kind of variables used in the model. 
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4 Method 
4.1 Genetic Algorithm (GA) 
 
Genetic algorithm (GA), one of the most applicable evolutionary algorithm, has been 
introduced first time by John Holland [27] which is based on Darwin’s evolution theory. This 
algorithm looks for the best solution among a population of potential solutions through 
biological operations such as crossover, mutation and so on. Many examples which have been 
solved by Dengiz et al., [28] Illustrates that Genetic algorithm can be applied to variety of 
problems. In order to adapt a problem to be solved by the Genetic algorithm, some parts of 
the Genetic algorithm have to be adapted according to the problem. The most common parts 
which require being adjusted are encoding, crossover, and mutation that are presented for the 
proposed problem in the following sections. 
 
 
4.1.1 Solution Representation 
 
In the proposed genetic algorithm, encoding contains six parts and each of them determines 
certain part of a solution and all of them together present a complete solution. The first 
section of the chromosome is related to the price which is presented by a string with the 
length of a number of periods. Each element has a value that presents the price of the product 
in the related period. The second section of the chromosome illustrates the place where the 
collection-rework center should be located. This part is demonstrated by a string with the 
length of L (L is the number of potential location) that each of them is relevant to a potential 
location and is presented by a real number in [0 1] which showed the merit of the related 
location to be a collection-rework center. Among potential locations, the highest value would 
be chosen as the center. The third section of the chromosome determines assigned vehicle and 
its routing for each period by a matrix with rows (T is the number of a period) and columns 
(C is the number of the customers). Each row is related to a period in which its first column 
assigns a vehicle with an integer value and C remaining columns are representatives of 
customers that show their priority with a real number in [0 1] to be visited by the determined 
vehicle through its route. The customer with the highest related value will be met at the 
beginning of the route and customer with the lowest value will be visited at the end of the 
route of the vehicle. The fourth section of the chromosome contains a matrix with the 
dimension of (S and V are the numbers of manufacturer vehicle respectively) that determines 
the product flows and assigned vehicles between manufacturer and customers. Each member 
is relevant to a customer, manufacturer, vehicle and period, it has a value in the range between 
[0 1] and shows the priority of related customer, manufacturer, vehicle and period to assign 
product flow. In order to satisfy customers’ demands in each period, manufacturers and 
vehicles are assigned according to their priority value with considering their capacities. The 
fifth section of the chromosome is presented by a matrix with C rows and T columns that 
determine how high percent of demand of each customer in each period should be satisfied by 
the collection-repair center. If the amount that determined reworked product for a customer 
were more than the inventory of the collection-repair center, the customer would not receive 
more than the inventory level. The sixth section is relevant to the amount of materials that are 
ordered by manufacturers at the beginning of every period which is presented by a matrix 
with S rows and T columns. Values in this part are real numbers that are generated by the 
standard normal distribution function. The previous parts of the chromosome have determined 
the number of the product that each manufacturer must produce every period, and thus, the 
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number of required materials for each manufacturer can be calculated. If a value in the sixth 
part of the chromosome is equal to a negative number, the related manufacturer in that period 
orders as many as the requirement of that period considering the inventory of materials from 
previous periods. On the other hand, if the value is bigger than zeros, the manufacturer orders 
material (1 + the proposed value) times more than the required number of material in that 
period. 
 
 
4.1.2 Genetic Operations 
 
Genetic operations play a significant role in genetic algorithms, and in this section, we 
introduce the applied operation in this research. In order to prevent uniformity in populations 
and to produce the wide range of solutions, two kinds of crossovers are implemented on the 
parents that are selected by the Roulette-wheel procedure. In the first one, there is guide 
metric for each part of a chromosome which is the same dimension as the related part and 
which has members with binary value. The offspring are produced according to their parent 
with different values that are exchanged for those elements that their related elements in the 
guide matrix are equal to one. For the second kind of crossover operator, a random number 
with uniform distribution function is generated for each element of every part. Suppose for 
one element the value in parent 1 and 2 are equal to a, b respectively, and is the generated 
random number. Therefore, if the values of the related element in the offspring are c, d, 
obtained by respectively. Figures 2 and 3 illustrate the crossover operators in the proposed 
algorithm. 
 

Fig. 2 First kind of crossover operation 
 

 
 
 
 
 

 
 

Fig. 3 Second kind of crossover operation 
 
The genetic operation that is extremely important to avoid local optimal solution is mutation 
that preserves diversity in each generation. In this algorithm, mutation is implemented by 
reverse operator in which two rows or two columns are chosen randomly and values in every 
column or row are reversed. Figure 4, shows performance of this operator. 
 

0.31  0.53  0.71  0.39  
  

0.71  0.53  0.31  0.39  
0.29  0.47  0.13  0.57  0.13  0.47  0.29  0.57  
0.40  0.62  0.27  0.97  0.27  0.62  0.40  0.97  

 
Fig. 4 mutation operation 

Offspring1 0.49  0.86    0  1    0.49  0.37  Parent1 0.53  0.82  1  0  0.91  0.82  
      

Offspring2 0.31  0.37  Guide Matric 0.31  0.86  Parent2 0.91  0.77  0.53  0.77  

Offspring1 0.37  0.43    0.65  0.15    0.49  0.37  Parent1 0.61  0.79  0.78  0.42  0.91  0.82  
      

Offspring2 0.42  0.78  
  for the elements    

0.31  0.86  Parent2 0.82  0.79  0.53  0.77  
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In order to ensure the feasibility of individuals, chromosomes must be evaluated after each 
generation in the first population or after applying genetic operations. If the generated 
chromosome produces a feasible solution which does not violate the constraints, it will be 
accepted, otherwise, it will be rejected and another chromosome will be generated until 
achieving a feasible one. 
 
 
4.2 Imperialist Competitive Algorithm (ICA) 
 
ICA is one of the newest methods in meta-heuristic field that was suggested and developed by 
[29]. This method is based on the human social and political behavior. Similar to GA, the ICA 
is a population-based algorithm and the population consisted of some countries which are 
classified in two categories: imperialists and colonies. Imperialist is a country that rules a 
number of countries which are called colonies. In other words, the policies, culture, religion 
and other social measurements of a colony is delineated by the imperialist in power. After 
producing initial population randomly, at first step each country must be specified to either 
imperialist or colony. The countries have several attributes including culture, language, 
religion, economic policy, etc. Next, the fitness value of countries will be calculated and those 
with lowest cost are determined as imperialists and other countries will be considered as 
colonies. Then the numbers of each imperialist’s colonies are calculated by Eqs. (35)- (38): 
 

( )ic Cost country   (35) 

  n i i nC max c c   (36) 

n
n

i

CP
C




              (37) 

   .n n colnumber of clonies round P N  (38) 
where ܿ௡ and ܥ௡ are the cost of nth imperialist and its normalized cost respectively. ௡ܲ is 
imperialist’s power and imperialists with lower cost have higher power and it increases their 
chance to get more colonies. After specifying imperialists and their colonies, ICA devices 
assimilation policy and revolution operators to search for better countries. Assimilation policy 
is performed on all colonies to form new ones. In this policy, each imperialist absorbs 
colonies by making changes in their attributes such as social, cultural, regional etc. Next; the 
cost of new colonies that are absorbed to the current imperialist must be recalculated. If the 
new colony is better than its imperialist, they will be exchanged with each other immediately. 
The second operator is revolution that creates diversification in countries. This operator 
randomly selects two attributes in a country and exchanges their values. Then, the power of 
each emperor is calculated by Eqs. (39)- (41): 

    . .   n n nT C Cost Imperialist mean Cost Colonies of Empire   (39) 
 . . . .n i i nN T C max T C T C   (40) 

1

. .
. .

n
Pn Nimp

ii

N T CP
N T C






 (41) 

where ܶ.  ௡equivalent to total is cost of nth empire and ζ  is a positive number which isܥ
considered lower than1, ܰ. ܶ.  ௡ is power of nth empire and ௉ܲ௡ is the  possession possibilityܥ
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of each emperor. The emperor with the lowest cost will be considered as the weakest emperor. 
Then the other emperors compete with each other to take possession of the weakest colonies 
of the weakest emperor. ICA uses a selection process to choose an emperor that will pick up 
the mentioned colonies. The vector R created uniformly distributed random number as 
following: 

1 2 ,...,,  NimpR r r r     
From vector D in eq. (42), the emperor with highest value will be selected and the weakest 
colony of the weakest emperor will be assigned to it. 

1 2 1 1 2 2, ,..., , ,...,
Nimp NimpNimp P P p pD P R D D D p r p r p r             (42) 

The stopping criterion of the algorithm indicates the remaining of one emperor. In order to 
adapt the ICA with the proposed problem, the solution representation is as the same as the 
section 4.1.1 However, the elements that have discrete value are rounded before encoding the 
representation to a solution. 
 
 
5 Computational Results 
 
The required data to analyze the performance of the random generated test problems are 
shown in Table1.  The data is introduced by [30] and has been adopted as reference and 
modified in order to illustrate the application of the multi-period model.  
 
Table  1 Problems’ factor range [30] 

Factor Range 
Price Unif(3750,5000) 
Fixed cost for establishing the collecting-repair center Unif(100000,1000000) 
Fixed cost of each vehicle Unif(60000,400000) 
Unit shipping cost of each vehicle Unif(200,500) 
Capacity of each vehicle Unif(600,14000) 
The sales price of un-repairable defective product Unif(500,1000) 
Unit cost of repair Unif(500,1500) 
Mean price-independent demand Unif(0, 3000) 
Rate of price-dependent demand Unif(0.3,0.5) 
Unit storage cost Unif(150,300) 
Ordering cost for each manufacture Unif(100000,500000) 
Unit purchasing cost for each manufacture Unif(1500,2500) 
Unit storage cost in warehouse of each manufacture Unif(50,100) 
 
 

The required data to analyze the performance of the problem includes five factors, namely: 
number of customer, number of manufacture, number of vehicle, number of period and 
number of possibility of location. These factors have several levels which are illustrated in 
Table2.  
 
Table 2 Problems’ factor level 

Factor Level 
Number of customers 10,15,30,50 
Number of manufactures 5,10,15 
Number of possibility of  locations 2,4,6 
Number of vehicles 3,4 
Number of periods 3,5,7 
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n 
20

25
-0

8-
01

 ]
 

                            12 / 18

http://ijorlu.liau.ac.ir/article-1-512-en.html


Technology transfer strategy in the upstream oil industry (oil fields development) of … 69 

Parameter of the proposed GA and ICA is experimentally tuned to increase their quality to 
reach a good solution for the random generated test problems. Computational result for 
proposed algorithms is illustrated in Table3. Performance of the proposed GA and ICA are 
compared by average relative percent deviation (RPD) criterion and computational time. Each 
test problem computed five times and average of each metrics (RPD and Time) is listed in 
Table3. RPD is calculated from the formula: 
 

 
 

      
  

Objectivevalue of the metaheuristic Best objectivevalue
RPD

Best objectivevalue


  (43) 

 
Table 3 Evaluation of proposed GA and ICA based on RPD and Time metrics 

Problem. 
No 

Customer. 
No 

Manufacture. 
No 

Location. 
No 

Period. 
No 

Vehicle. 
No 

 ࡭ࡳതതതതതതതതࡱࡹࡵࢀ ࡭ࡳതതതതതതതࡰࡼࡾ
(Second) 

 ࡭࡯ࡵതതതതതതതതࡱࡹࡵࢀ ࡭࡯ࡵതതതതതതതࡰࡼࡾ
(Second) 

1 10 5 2 3 3 0.0237288 425.407 0.0406863 376.333 
2 10 5 2 7 3 0.0234023 844.909 0.0800137 785.251 
3 10 5 2 5 3 0.0049064 742.751 0.1153327 755.300 
4 10 5 2 3 4 0.0271916 386.694 0.0359364 407.896 
5 10 15 2 7 4 0.0418422 249.498 0.0699423 422.447 
6 15 5 4 3 3 0.0544567 440.584 0.1143359 546.721 
7 15 5 4 7 3 0.0624784 924.552 0.0498192 1170.33 
8 15 10 4 5 3 0.0119512 1058.131 0.0382464 940.571 
9 15 10 4 3 4 0.0637660 1053.607 0.0755459 1026.25 

10 15 15 4 7 4 0.0491737 3363.753 0.0313403 2165.78 
11 30 5 6 3 3 0.0154657 1972.122 0.0187021 1080.34 
12 30 5 6 7 3 0.0325618 3831.096 0.0150003 1461.72 
13 30 10 6 5 3 0.0420129 3409.721 0.0150219 1278.78 
14 30 15 6 3 4 0.0062571 2526.404 0.0227787 1172.51 
15 30 15 6 7 4 0.0185432 6943.777 0.0043170 2180.83 
16 50 5 2 5 3 0.0153439 3447.590 0.0037656 1682.52 
17 50 5 2 3 3 0.0219868 1937.583 0.0270462 1243.36 
18 50 10 2 7 4 0.0378207 7172.907 0.0060285 5438.20 
19 50 15 2 5 4 0.0178107 7964.289 0.0691935 3401.86 
20 50 15 2 3 4 0.0418206 8430.917 0.0170096 2208.37 

Mean 0.0306260 2856.31 0.042503 1487.27 
 
The computational results are graphically illustrated in figures 5 which. Fig 5 shows that GA 
performs better than ICA in problems 10 and 15 customers. In problems 30 and 50 customers 
both in ICA and GA have a same behavior.  
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Fig. 5 Average Relative Percent Deviation (ܴܲܦതതതതതത) for different value of customer 
 
 
Figure 6. demonstrates that GA performs better than ICA based on RPD metric in problems 5 
and 15 manufactures and  ICA in problem with 10 manufactures is better. 
 
 

 
Fig. 6 Average Relative Percent Deviation (ܴܲܦതതതതതത) for different value of manufacture 
 
Figure 7. shows that GA performs better than ICA based on RPD metric in problems 2 and 4 
locations and  ICA is better in problem with six manufactures. 
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Fig. 7 Average Relative Percent Deviation (ܴܲܦതതതതതത) for different value of possibility location 

 
 

The interaction between (Number of vehicle, RPD) and (Number of period, RPD) are 
illustrated in Figures 8 and  9 respectively. These figures demonstrate that in all of the 
problems GA is better than ICA in quality of solution. 
 
 

 
Fig. 8 Average Relative Percent Deviation (ܴܲܦതതതതതത) for different value of vehicles 
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Fig. 9 Average Relative Percent Deviation (ܴܲܦതതതതതത) for different value of period 
 
 
6 Conclusions  
 
In this study, a multi-period closed-loop supply chain problem with pricing policy has been 
considered. There are two echelons contain manufacturers and customers that are connected 
by a heterogeneous fleet of vehicles. In this paper, some of the delivered products to 
customers might be defective; therefore, they are picked up and collected in the collection-
repair center in order to repair and return to the chain or to sell as wastes. As it has been 
mentioned in the literature review, the problem belongs to Np-hard problem; therefore, a 
genetic algorithm (GA) and an Imperialistic Competitive Algorithm (ICA) are applied so that 
we generated randomly generated test problems and solved them to evaluate their efficiency. 
In addition, the algorithms are compared by average relative percent deviation (RPD) criterion 
for the different number of customer, manufacturer, potential location, vehicle, and period and 
computational results are graphically have been illustrated. Although GA performance is 
better in a majority of the test problems but there is no significant difference between GA and 
ICA in general. However, average CPU time of ICA is less than GA in all cases. Thus, when 
time is important to achieve a solution, the ICA would be the choice with waiving the nuance 
between the two algorithms.  

There are some guidelines for future research; first, this paper has not considered 
suppliers while as a significant player in supply chain management and an effective supplier 
selection can enhance its productivity. Second, we considered a problem when products are 
sent from manufacturers to customers directly that require a separated vehicle in each path, 
and thus, transportation cost increases dramatically. However, cross-duck can be located as 
the connector between manufacturers and customers and used as a temporary stock in order to 
reduce transportation costs and improve service level to the customers by delivering products 
on time. 
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