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Abstract In this paper we consider a global optimization approach for solving fuzzy fractional 
posynomial geometric programming problems. The problem of concern involves positive trapezoidal 
fuzzy numbers in the objective function. For obtaining an optimal solution, Dinkelbach’s algorithm 
which achieves the optimal solution of the optimization problem by means of solving a sequence of 
subproblems is extended to the proposed problem. In addition, An illustrative example is included to 
demonstrate the correctness of the proposed solution algorithm. 
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1 Introduction 
 
In most of the practical situations the possible value of the parameters involved in objective 
could not be defined precisely due to the lack of available data. The concept of fuzzy sets [1] 
is seemed to be most appropriate to deal with such imprecise data. To deal with fuzziness, 
fuzzy programming have been proposed to make decisions under an uncertainty environment. 
Cao was the pioneer in the research topic of fuzzy geometric programming problem [2, 3]. 

The optimization problem in which the objective function appears as a ratio of two 
functions is known as a fractional programming (FP) problem [4-6]. Fractional objectives 
appear in many real world situations. For instance, we often need to optimize the efficiency of 
some activities like cost/time, cost/profit, and output/employee. For an overview of these 
applications, we refer to [7, 8] and the references therein. The optimization problem involving 
imprecise parameters in FP are called fuzzy fractional programming (FFP) problem [9-12]. 

There are different solution algorithms for determining the optimal solution of particular 
kinds of fractional programming problems. Charnes and Cooper [13] proposed an exact linear 
programming reformulation of the continuous linear fractional program. One of the popular 
solution methods was first introduced by Martos and Andrew Whinston [14] and Jagannathan 
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[15] and they named it as the so-called “parametric” approach. The main idea of this 
parametric approach is to solve an equivalent parametric problem of the fractional program. 
Dinkelbach [16] extended the parametric approach to solve the continuous nonlinear 
fractional programs using the Newton’s method. It is worth mentioning that Dinkelbach’s 
method is valid for fractional problems with objectives being minimized or maximized. 
Several authors extended Dinkelbach’s approach to solve several problems involving 
fractional objectives such as generalized fractional programming problems [6, 17] and the 
minimum spanning tree with sum of ratios problems [18]. Almogy and Levin [19] extended 
the parametric approach of Dinkelbach to solve sum of ratios problems. Tammer et al. [20] 
and Valipour et al. [21] extended Dinkelbach’s approach to solve multiobjective linear 
fractional programming (MOLFP) problems. An algorithm based on the parametric approach 
was proposed to solve integer linear fractional programming problems by Ishii et al. [22]. 
Pochet and Warichet [23] and You et al. [24] showed that the parametric approach is very 
efficient for solving mixed-integer linear fractional programming (MILFP) models for cyclic 
scheduling. Yue, Guillén-Gosálbez and You [25] proposed an exact mixed-integer linear 
programming (MILP) reformulation for large-scale MILFP problems, although it cannot be 
applied to mixed-integer non-linear fractional programs. Zhong and You [26] is concerned 
with the parametric algorithms for solving large-scale mixed-integer linear and nonlinear 
fractional programming problems. Chu and You [27] developed an efficient global 
optimization algorithm for the MINLFP master problem that is based on a parametric 
fractional programming approach. Also to optimize the non convex MINLFP problems, Gong 
et al. [28] and Chu and You [29] proposed the global optimization strategies based on the 
Dinkelbach’s algorithm. Although Dinkelbach’s approach has been used to solve many 
different problems involving fractional objectives, there is no absolutely successful extension 
to solve fuzzy fractional posynomial geometric programming (FFPGP) problems. 

The current paper attempts to propose an iterative algorithm that extends Dinkelbach’s 
approach to solve a fractional posynomial geometric programming problem with positive 
trapezoidal fuzzy coefficients in objective function. This paper is organized as follows: fuzzy 
notations and definitions used in the remaining parts of the paper are presented in Section 2. 
Section 3 contains the mathematical formulation of fuzzy fractional posynomial geometric 
programming problem and its solving procedure. In addition, parameterized form of the 
problem concern is described by proving some theorems. An illustrative example is given in 
Section 4 to clarify the solution algorithm. The paper ends with conclusions in Section 5. 

 
 

2 Preliminaries 
 
In this section, we give some notions and definitions on which our research in this paper is 
based. 

Fuzzy sets first introduced by Zadeh [1] as a mathematical way of representing 
vagueness in everyday life. According to [30], The characteristic function A  of a crisp set 

XA   assigns a value either 0  or 1 to each member in X . This function can be generalized 
to a function A   such that the value assigned to the element of the universal set X  fall within 
a specified range i.e. : [0,1]A X  . The assigned value indicates the grademembership  of 
the element in the set A . The function A   is called the functionmembership  and the set 

= {( , ( )); }
A

A x x x X 


  defined by ( )A x   for each Xx  is called a setfuzzy . A fuzzy set 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

or
lu

.li
au

.a
c.

ir
 o

n 
20

26
-0

1-
29

 ]
 

                             2 / 12

http://ijorlu.liau.ac.ir/article-1-538-en.html


Global optimization of fractional posynomial geometric programming problems under fuzziness 
 29 

A , defined on the universal set of real numbers R , is said to be a numberfuzzy  if its 
membership function has the following characteristics: 

1. : R [0,1]A   is continuous.  
2. ( ) = 0A x   for all ),[],(  dax . 
3.  ( )A x   is strictly increasing on ],[ ba  and strictly decreasing on ],[ dc . 
4. ( ) = 1A x   for all ],[ cbx , where dcba <<< . 

Definition 2.1 [30] A fuzzy number ( , , , )A a b c d  is said to be a trapezoidal fuzzy number if 
it’s membership function is given by: 

( ) ,  < < ,
( )

( ) = 1, ,
( ) ,  < < .
( )

A

x a a x b
b a

x b x c
x d c x d
c d




   
 



             (1) 

The  -cut (level set) [31] of fuzzy number A  can be obtained as: 
( ) = = { | ( ) },AA A x x   
  for example, let A  be a trapezoidal fuzzy number, to find the   

 -cut of A , we first set [0,1]  to both left and right reference functions of A , that is, 

)(
)(=

ab
ax


  and 

)(
)(=

dc
dx


 . Expressing x  in terms of  , we have aabx  )(=  and 

dcdx  )(=  which gives the  -cut of A  as: 
= [ ( ), ( )] = [( ) , ( ) ].A A A b a a d c d            

Definition 2.2 [32] A trapezoidal fuzzy number = ( , , , )A a b c d  is said to be positive 
(negative) trapezoidal fuzzy number, denoted by > 0 ( < 0)A A  , if and only if 0)<( 0> ca .  
Definition 2.3 [33] Let 0>0,> ba  and consider the interval ],[ ba . From a mathematical 
point of view, any real number can be represented on a line. Similarly, we can represent an 
interval by a function. If the interval is of the form ],[ ba , the interval function is taken as 

[0,1].  ,=)( 1  qforbaqh qq
 

According to [34], a functionsignomial  is defined as the sum of signomial terms, which 
in turn consists of products of power functions. Thus, a signomial function can be expressed 
mathematically as ,=)(

1=1=
kl

l
m

lk
J

k
xcx    where the coefficients kc  and the powers kl  are 

real. A special type of signomial function, where all coefficients ,1,...,=0,> Jkck  is called 
functionposynomial . 

Definition 2.4 [35] A posynomial geometric programming (PGP) problem can be stated as: 
Find T

mxxxx ),...,,(= 21  so as to  

,=)(min 0
1=0

0
1=0

kl
l

m

lk
J

k
xcxg   

 s.t.                                                                                                   (2) 
 ,1,2,...,=1,=)(

1=1=
pixcxg ikl

l
m

lik
iJ

ki    

 ,1,2,...,=0,> mlxl  
where kc0  and ikc  are positive real constant coefficients for all ki, ; 
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 kl0  and ikl  are arbitrary real constant exponents for all lki ,, ; 
 0J  is the number of terms present in the objective function )(0 xg ; 
 iJ  is the number of terms present in the i -th constraint, pi 1,2,...,= . 

 
 
3 Problem formulation and solution concept 
 
In this section, a fuzzy fractional posynomial geometric programming problem and its global 
optimization based on the iterative parametric approach are described. 
 
 
3.1 Problem formulation 
 
The problem to be considered in this paper is the following fuzzy fractional posynomial 
geometric programming (FFPGP) problem: 
Find T

mxxxx ),...,,(= 21  so as to  
1 1

1 1=1 =1

2 2
2 2=1 =1

( ) =
max

( ) =

mJ kl
k lk l

mJ kl
k lk l

g x c x

g x c x





 
 

 
 

 s.t.                                                 (3)  
},<;0{= UL xxxxXx   

 where T
mxxxx ),...,,(= 21  is a variable vector, and T  stands for transpose; 

 the feasible region X  is nonempty, compact and bounded; 
 kc2  are positive real constant coefficients for all k ; 
 kl1  and kl2  are arbitrary real constant exponents for all lk, ; 
 ),,,(=~

11111 kkkkk dcbac  are positive trapezoidal fuzzy numbers; 
 1J  and 2J  represent the number of product terms of numerator and of denominator in the 
objective function, respectively; 

1( )g x  and )(2 xg  are fuzzy posynomial function and posynomial function, respectively, and 
)(2 xg  is positive for all x  in the feasible region X . 

 
 
3.2 solution concept  
 
In this subsection, a global optimization approach for solving the problem (3) involving 
positive trapezoidal fuzzy coefficient in objective function is presented. 
 
 
3.2.1 Formulation based on interval function  
 
At first for a certain degree [0,1],= *   estimated by the decision maker, the problem (3) 
can be understood as the following nonfuzzy  -fractional posynomial geometric 
programming ( -FPGP) problem: 
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1 1
1 1=1 =1

2 2
2=1 =1

[ ( ), ( )] mJ kl
k k lk l

mJ kl
k lk l

c c x
Max

c x





   
 

 

 s.t.                                                                                             (4)  
 }.<;0{= UL xxxxXx   

Next based on Definition 2.3 in section 2, optimization problem ( 4 ) can be written as the 
following equivalent problem )( qP : 

11 1
1 1=1 =1

2 2
2=1 =1

( ( )) ( ( )) mJ q q kl
k k lk l

mJ kl
k lk l

c c x
Max

c x





    
 

 

 s.t.                                                    (5)  
 },<;0{= UL xxxxXx   
 1.0  q  

The following theorem gives the idea that the  -optimal solution of the problem ( 4 ) is 
possible to find in the form of problem (5) ,(see [33]). 
Theorem 3.1 the problem (5)  provides the solution of the problem ( 4 ).  
Proof. For any k , if we take )](),([ 11   kkk cc , the problem ( 4 ) reduces to 

1 1
=1 =1

2 2
2=1 =1

mJ kl
k lk l

mJ kl
k lk l

x
Max

c x





 
 

 

s.t.                                 (6) 
 }.<;0{= UL xxxxXx   

Let us consider the interval function qqbaqh 1=)(  for [0,1]q  and for an interval ],[ ba . 
Since )(qh  is a strictly monotone increasing and continuous function, the above problem 
reduces to: 

1 1
=1 =1

2 2
2=1 =1

mJ kl
k lk l

mJ kl
k lk l

x
Max

c x





 
 

 

s.t.                                               (7) 
 },<;0{= UL xxxxXx   

 where q
k

q
kk cc ))(())(( 1

1
1    and [0,1]q . 

Since qqbaqh 1=)(  for [0,1]q  is a strictly monotone and continuous function, its 

inverse exists. Let   be the inverse of )(qh , then 
ab
aq

loglog
loglog=


 , therefore, we can find 

any particular   for some values of [0,1]q .  
Thus we can find the  -optimal solution of the problem ( 4 ) only by solving the problem 

(5) . 
Note that for 0=q , the lower bound of the interval value of the parameter q  is used to 

find the optimal solution, so the following )( 0P  problem yields the lower bound of the 
optimal solution of problem (5) . 
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1 1
1 1=1 =1

2 2
2 2=1 =1

( ) = ( )

( ) =

mJ kl
k lk l

mJ kl
k lk l

g x c x
Max

g x c x






  
 

 

s.t.                                                                   (8)  
 },<;0{= UL xxxxXx   

also, the case 1=q  means that the upper bound of the interval parameter q  is used for finding 
the optimal solution, then the following )( 1P  problem yields the upper bound of the optimal 
solution of problem (5) . 

1 1
1 1=1 =1

2 2
2 2=1 =1

( ) = ( )

( ) =

mJ kl
k lk l

mJ kl
k lk l

g x c x
Max

g x c x






  
 

 

s.t.                                            (9)  
 }.<;0{= UL xxxxXx   

Two optimization problems (8)  and (9)  can be more tractable by adopting Dinkledbach’s 
parametric approach [16] as we will see in the following subsection. 
 
 
3.2.2 Equivalent parametric problem and its properties   
 
Consider the two fractional geometric programming problems (8)  and (9) where their 
numerator and denominator are continuous posynomial functions. Using a parametric 
approach in [16], the above (8)  and (9) problems can be solved indirectly by finding the 
solution to the following two equivalent parametric problems )( 

P  and )( 
P , respectively, 

i.e., 
1 2( ) = { ( ) ( ); },Q max g x g x x X    

                 (10)
 

 and  
1 2( ) = { ( ) ( ); },Q max g x g x x X    

                      (11)
 

where  (resp.  ) is a parameter. For a fixed parameter  (resp.  ), the parametric 
problem (10)  (resp. (11) ) is typically easier to solve than the fractional geometric 
programming problem (8)  (resp. (9) ). 

In what follows, since the properties of function )( Q  and solution procedure to 
problem (10)  being similar to the properties of function )( Q  and solution procedure to 
problem (11) , respectively, we only prove the properties of )( Q  and only show solution 
procedure to problem (10) . 

The parametric problem (10)  has some special properties that can be utilized for solving 
the fractional geometric programming problem (8) . Specifically, we show through following 
Lemma that the function )( Q  is convex, strictly monotonic decreasing and continuous, and 
then we show that nonlinear equation 0=)( Q  has a unique solution   which is exactly 
the global optimal objective value of the problem (8) . 
Lemma 3.2 Let });()({=)( 21 XxxgxgmaxQ     , then 
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a. The function )( Q  is strictly monotonic decreasing and convex over R . 
b. The function )( Q  is continuous for R . 
c. 0=)( Q  has a unique solution.  

Proof. (a) The monotonically decreasing of )( Q  follows from the positivity of )(2 xg . For 
convexity, let 10  t  and tx  be the optimal solution that maximizes ))(1( 21

   ttQ  with 
  21  . Then, 

)())(1()(=))(1( 221121 tt xgttxgttQ      
)]()()[(1)]()([= 221211 tttt xgxgtxgxgt      

});()({)(1});()({ 221211 XxxgxgmaxtXxxgxgtmax      
).()(1)(= 21

   QttQ  

(b) Let 1x  be the optimal solution of )(
1Q , then )( 1

2 xg  is a positive constant and we also 
have 

).()(=});()({=)( 1
2

11
12

1
1

1
xgxgXxxgxgmaxQ      

The function )( Q  is continuous, because it is monotonically decreasing (based on ( a )), and 

also for every 0> , we can find a 0>
)(

= 1
2 xg


 , such that for all    ||,0
1

R , 

we have 
|});()({)}()({|=|)()(| 21

1
2

11
1

1
XxxgxgmaxxgxgQQ      

|)}()({)}()({| 1
2

1
1

1
2

11
1 xgxgxgxg      

|,)(||)(|=|)()(=| 1
2

11
2

1
xgxg     

since 0>)( 1
2 xg  and ,

)(
=||0 1

2

1

xg


    we have .|)()(|0
1

   QQ  

(c) Since for 0>)(2 xg , 
 =)(lim  Q  and 

 =)(lim  Q . Furthermore, based 
on monotonically decreasing of )( Q , we can conclude that 0=)( Q  has a unique 
solution.  

Now, we have the following Theorem for the equivalence between the parametric 
problem (10)  and the fractional geometric programming problem (8) . 
Theorem 3.3 The variable *x  is a global optimal solution to the fractional geometric 
programming problem (8)  if and only if *x  is a global optimal solution to the parametric 

problem (10)  with the parameter 
*  such that 0.=)(

*Q   
Proof. Let Xx *  be a global optimal solution of the parametric problem )( *

P , then we 

have 0=)()( *
2

**
1 xgxg    and Xxxgxgxgxg    0,=)()()()( *

2
**

12
*

1   . Since 

0>)(2 xg , we have . ,
)(
)(

)(
)(=

2

1
*

2

*
1*

Xx
xg
xg

xg
xg




   Thus, 
*  is the maximum of the 

fractional geometric programming problem (8)  and *x  is the global optimal solution of it. 
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Conversely, let *x  be a global optimal solution of the fractional geometric programming 
problem (8)  and 

*  be the optimal objective function value, so we have 

. ,
)(
)(

)(
)(=

2

1
*

2

*
1*

Xx
xg
xg

xg
xg




   Since 0>)(2 xg , we have 

Xxxgxgxgxg    0,=)()()()( *
2

**
12

*
1   . This implies that *x  is the global optimal 

solution of the parametric problem (10) .  
As will be presented in the next subsection, Dinkelbach’s iterative algorithm relies on the 

solution of a sequence of parametric subproblems )( 
n

P


 in order to converge to the global 

optimal solution of the fractional geometric programming problem (8). 
 
 
3.2.3 Iterative algorithm for solving parametric problem (10) 
 
Dinkelbach’s iterative algorithm [16] solves the parametric problem (10)  by generating a 

sequences of   converging to 
* . The algorithm terminates once the objective value of the 

problem (10)  becomes zero. 
Based on the properties of the parametric problem (10) , it is easy to see that 

*
<0>)(   Q ,  

*
=0=)(   Q   and  

*
>0<)(   Q . 

Therefore, the solution of the problem (10)  ends up with finding the root of equation 
0=});()({=)( 21 XxxgxgmaxQ     . Although there are a number of root-finding 

algorithms for solving nonlinear equations, in this paper, we apply the Newton’s method to 
solve the parametric problem (10) . 

In Newton’s method [16, 36], 
1n  is defined by, 

)(
)(=1 




 


n

n
nn Q

Q



 . We can use the 

approximated subgradient [26] at point 
n  to estimate the derivative, 

)()(=)( *
2 n

n

n
n xg

d
dQQ 









 , which is the negative value of the denominator evaluated at *
nx , 

a global optimal solution of });()({ 21 Xxxgxgmax n    . Therefore, we have 

)(
)(=

)(
)()(=

)(
)(= *

2

*
1

*
2

*
2

*
1

*
2

1
n

n

n

nnn
n

n

n
nn xg

xg
xg

xgxg
xg

Q 











  



 . 

The full procedure of the Dinkelbach’s algorithm based on the Newton’s method for 
solving (10)  is as follows: 

:1 Step  Choose arbitrary Xx 0  and set 
)(
)(=

02

01
1 xg

xg 
   or simply set 0=1

  and 1=n . 

:2 Step  Solve 0=});()({=)( 21 XxxgxgmaxQ nn     . Denote the optimal solution as *
nx . 
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:3 Step  If  |<)(| 
nQ  (optimality tolerance), stop and output *

nx  as the optimal solution and 


n  as optimal objective. If   |)(| nQ , let 

)(
)(= *

2

*
1

1
n

n
n xg

xg 



 , update n  with 1n  and update 


n  with 

1n . Go to Step 2. 
 
 
3.3 Solution algorithm  
 
We now summarize the proposed approach for solving the problem (3) with positive 
trapezoidal fuzzy coefficient in this work and construct a solution algorithm. 

The basic steps of the algorithm are given below: 
:0 Step  Start with an initial level set 0== * . 
:1 Step  Convert problem FFPGP into it’s nonfuzzy version  -FPGP. 
:2 Step  Rewrite problem ( 4 ) in the forms of two optimization problems (8)  and (9) . 
:3 Step  Change the problems (8)  and (9)  into the two equivalent parametric problems (10)  

and (11) , respectively. 
:4 Step  Solve the problems (10)  and (11)   for finding the lower and upper bound of the  -

optimal solution of problem ( 4 ) by using Dinkelbach’s algorithm. 
:5 Step  Set [0,1])(= *  step  and go to Step 1. 
:6 Step  Repeat again the above procedure until the interval [0,1] is fully exhausted. Then, 

stop. 
Remark 3.4  It should be stated here that in the solution algorithm suggested above, a 
systematic variation of  -level set among the interval [0,1] will yield another optimal 
solution to problem (10)  and the decision maker must determine this  -level set according 
to his desire.  
 
 
4  Numerical example 
 
In this section, a numerical example is given to illustrate the validity of the algorithm 
proposed in Section 3. 
Example 4.1 Consider the following FFPGP problem: 

2 1 1 0.3 1.5
1 2 3 4 1 2 3

2 1 0.5
2 3 4 1 2 4

(2,2.5,3.5,5) (1,5,6,9)
3

x x x x x x xMax
x x x x x x

 

  




 

s.t.                                          (12)  
 1 2 3 41 , 14, 0.1 1, 1 10.x x x x       

By using  -cut of the fuzzy numbers coefficients, the FFPGP problem (12)  can be 
converted to the following nonfuzzy  -FPGP problem: 

2 1 1 0.3 1.5
1 2 3 4 1 2 3

2 1 0.5
2 3 4 1 2 4

[0.5 2, 1.5 5] [4 1, 3 9]
3

x x x x x x xMax
x x x x x x

    

  

      


 

s.t.                                                  (13)  
 1 2 3 41 , 14, 0.1 1, 1 10.x x x x       
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According to problem (5)  in Section 3, the  -FPGP problem (13)  can be transformed 
into the following form: 

1 2 1 1 1 0.3 1.5
1 2 3 4 1 2 3

2 1 0.5
2 3 4 1 2 4

(0.5 2) ( 1.5 5) (4 1) ( 3 9)
3

q q q qx x x x x x xMax
x x x x x x

      

  

      


 

s.t.                                                                                               (14)  
 1 2 3 41 , 14, 0.1 1, 1 10, 0 1.x x x x q         

Now by putting 0=q  and 1=q , the lower and upper bounds of the optimal solution of 
problem (14) will find by solving the following problems (15) and (16), respectively: 

2 1 1 0.3 1.5
1 2 3 4 1 2 3

2 1 0.5
2 3 4 1 2 4

(0.5 2) (4 1)
3
x x x x x x xMax
x x x x x x

  

  

  


 

s.t.                                            (15)  
 1 2 3 41 , 14, 0.1 1, 1 10.x x x x       

2 1 1 0.3 1.5
1 2 3 4 1 2 3

2 1 0.5
2 3 4 1 2 4

( 1.5 5) ( 3 9)
3
x x x x x x xMax
x x x x x x

  

  

    


 

s.t.                                                                     (16)  
 1 2 3 41 , 14, 0.1 1, 1 10.x x x x       

By using the parametric approach [16], the above problems (15) and (16) will take the 
following (17) and (18) forms, respectively: 

2 1 1 0.3 1.5 2 1 0.5
1 2 3 4 1 2 3 2 3 4 1 2 4(0.5 2) (4 1) (3 )Max x x x x x x x x x x x x x             

s.t.                           (17)  
 1 2 3 41 , 14, 0.1 1, 1 10.x x x x       

2 1 1 0.3 1.5 2 1 0.5
1 2 3 4 1 2 3 2 3 4 1 2 4( 1.5 5) ( 3 9) (3 )Max x x x x x x x x x x x x x               

s.t.                                                                          (18)  
 1 2 3 41 , 14, 0.1 1, 1 10.x x x x       

The above problems (17) and (18) has been solved using Dinkelbach’s algorithm and the 
results are reported in Table 1. The absolute optimality tolerance for the parametric 
algorithms are set as 310=  . 
 
Table 1. Results for the Example 4.1 

 -level set α-optimal objective value 
* *

( , )    global α-optimal solution * * * *
1 2 3 4(x , x , x , x )  

0   (1712.4, 10120.44) (14, 14, 1, 1) 
0.24   (2623.7, 9327.1) (14, 14, 1, 1) 
0.53   (3724.85, 8368.45) (14, 14, 1, 1) 
0.86   (4977.81, 7277.62) (14, 14, 1, 1) 

1   (5509.4, 6814.8) (14, 14, 1, 1) 
 
 
5  Conclusion 
 
This paper has dealt with a fuzzified version of a fractional posynomial geometric 
programming problem in which fuzzy parameters are involved in the objective function. The 
algorithm presented here proposed a solution technique using a parametric approach for 
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solving fuzzy fractional posynomial geometric programming FFPGP problem. Based on the 
obtained results in the last section, we conclude that using the proposed solution algorithm is 
useful to solve a FFPGP problem. 

The advantages of the proposed procedure in this paper with respect to the other work on 
fractional programs is as follows. The proposed problem in this paper is a generalization of 
the fractional posynomial geometric programming problem where the coefficients of 
numerator of objective function are fuzzy numbers. 

To our knowledge, this is the first algorithm that has been proposed for solving this 
problem. We believe this problem could be important for the future study of the fuzzy 
fractional optimization. 

The denominator of objective function adopted in this paper is still the real-valued 
function. In the future research, we may extend to consider the both numerator and 
denominator of objective function as the fuzzy-valued functions. 
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