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Abstract The modeling of the volatility is one of the most problems in financial research areas such as 

pricing derivatives, risk estimation and financial decision-making. In recent years, many attempts have 

been made to identify the optimal model for better estimation and forecasting of volatility and risk in 

investment and policies economic. This study aimed to identify and investigate a suitable model for 

estimating the value at risk in the stock exchange data. Based on the four stock indices, the value at 

risk is estimated using an adaptive model. Using different criteria, it is observed that the adaptive 

model has a good performance. 
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1 Introduction 

 

Volatility is one of the most important aspects of the development of financial markets and 

plays an essential role in portfolio management, arbitrage pricing, and market rules. Within 

the different forms of financial risk measurement tools, value at risk (VaR) is widely accepted 

as a fundamental tool for risk management and it has become a standard benchmark for 

measuring financial risk. There are several literatures discussing the VaR estimation. For 

instance, Shahmoradi and Zanganeh [1] obtained value at risk using the parametric method 

and the results show that these types of models are quite successful in estimating the VAR. 

Shahiki Tash et al. [2] calculated the VaR in the Tehran stock exchange. The results show that 

the risk level is high in Tehran stock exchange by comparing the estimated value of risk; the 

distribution of the generalized error has a better performance than the t-student distribution 

and normal distribution. Chen and Lu [3] estimated the VaR models and found that CAViaR 

and the NIG-based estimation is robust and deliver accurate VaR estimation, if the short 

forecasting interval is considered. Lima and Neri [4] compared the Value-at-Risk measure. 

The results indicate that the non-robust methodologies have higher probability to predict VaRs 

with too many violations. Taylor [5] forecasted the value at risk and expected shortfall using a 

semi-parametric approach based on the asymmetric Laplace distribution. Gaglianone et al. [6] 

evaluated value-at-risk models via quantile regression.‏ The methodology allows to identify 

periods of an increased risk exposure based on a quantile regression model. Aloui and 
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Mabrouk [7] evaluated the VaR and the expected shortfall for some major crude oil and gas 

commodities for both short and long trading positions. The VaR of X (with the cumulative 

distribution function ( )XF x ) is given by 

 ( ) inf ( )XVaR X x R F x                                                                                            (1) 

In other words, the VaR is equal to (1 ) worst-case quantile of a loss distribution. Different 

aspects of the VaR have considered as a tool for managing risk. Conditional value at risk 

(CVaR) and the conditional autoregressive value at risk (CAViaR) are the two development of 

the VaR.  The CVaR of a random variable X, as a conditional expectation of the loss within 

that quantile can be written as: 

( ) ( )CVaR X E X X VaR X                                                                                            (2) 

Moreover, CAViaR specifies the evolution of the quantile over time using a special type 

of autoregressive process, and estimates the parameters with regression quantiles. This 

approach has strong appeal in that it focuses the tail of return distribution directly and does 

not rely on any distributional assumption. The CVaR and CAViaR have been studied by 

several authors; see for example,‏ Chacha et al. [8] studied application of conditional 

autoregressive value at risk model to kenyan stocks. It was found that the asymmetric 

CAViaR slope specification works well for the Kenyan stock market and is best suited for 

estimating VaR. Jooyoung and James [9] show that the implied volatility has more 

explanatory power as the focus moves further out into the left tail of the conditional 

distribution of S&P500 daily returns. Huang at al. [10] studied the CAViaR and show that 

time-varying CAViaR models can do a better job for VaR prediction. Alexander and Baptista 
[11] compared the VaR and CVaR constraints on portfolio selection with the mean-variance 

model. 

The main purpose of this paper is to consider the adaptive model for estimating the VaR.  

In view of above considerations, the rest of the article is organized as follows. In Section 2, 

the conditional autoregressive value at risk is briefly introduced. The adaptive model is 

presented in Section 3. Different performance indices are considered in Section 4. For 

illustration, four sets of real data are discussed in Section 5. Conclusions are made in Section 

6. 

 

 

2 Conditional Autoregressive Value at Risk 

 

In this Section, we introduce the conditional autoregressive value at risk using the idea of the 

Engle and Manganelli [12]. Suppose that we observe a vector of portfolio returns 
1

T

t t
y


. Let θ 

be the probability associated with VaR, letting tx be a vector of time t observable variables, 

and   be a vector of unknown parameters. The conditional autoregressive value at risk can 

be written as: 

                                                  0

1 1

( ) ( ) ( ).
q r

t i t i j t j

i j

f f l x     

 

                                        (3) 
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where p = q + r + 1 is the dimension of   and l  is a function of a finite number of lagged 

values of observables. The autoregressive terms ( );  1,...,i t if i q   creates a smooth path 

between time-oriented quantiles. The first term, 0 , is simply a constant and the role of 

( )t jl x 
is to link ( )tf   to observable variables that belong to the information set [12]. 

 

 

3 Adaptive model 

 

Using an autoregressive framework, conditional autoregressive value at riskmodel aims to 

derive the evolution of the desired quantile rather than extracting the quantile from an 

estimate of a complete distribution or from a volatility estimate. The adaptive model is 

presented in the following expression. 

                              
1

1 1 1( ) ( ) ( 1 exp( ( ) ) ).t t t tQ p Q p G r Q p p


                                (4) 

Here ( )tQ p  is the p-th quantile at time t,   is regression parameter, and tr  is the excess 

return at time t and G is a constant. Engle and Manganelli note that the structure of the 

adaptive conditional autoregressive value at risk model is such that the estimator learns 

nothing from the extent to which the quantile has or has not been exceeded since it considers 

only whether ( )tQ p is larger than 
1tr
or not [12]. 

 

 

4 Performance indices 

 

In order to compare efficiency and accuracy of different methods, mean square error (MSE), 

mean absolute error (MAE), and mean error (ME) were used as performance indices. These 

performance indices are defined as, 

 Mean squared error 

                                              2 2 2

,

1

1
( )

n

t f t

t

MSE
n

 


                                                     (5) 

 Mean absolute error 

                                          
,

1

1 n

t f t

t

MAE
n

 


                                                            (6) 

 Me error 

                                           
,

1

1
( )

n

t f t

t

ME
n

 


                                                              (7) 

 See, Chai and Draxler [13]. 

 

 

4 Data analysis 

 

In order to demonstrate and compare the forecasting performance of the proposed model, we 

consider daily financial returns from 4 stock markets index in stock exchange: exchange price 

index, price and cash returns index, 50 active companies index, 30 largest companies index. 

Our sample is divided in two groups (in-sample and out-of-sample). We set, where G entered 

the definition of the adaptive model in Section 3.  In principle, the parameter G itself could be 
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estimated; however, this would go against the spirit of this model, which is simplicity. We 

first obtained the return of portfolio with price process 
tr  over the time period [t, t - 1] as: 

                                                               
1( / )t t tr Ln S S                                                          (8) 

where, 
tS  is the price of the underlying asset at time t. The Plots of the TEPIX, PCRI, 

50CI and 30CI are presented in Figures 1-4 respectively. The parameter of the model is 

estimated and then determined the efficiency and superiority of this model in each of the  

stock exchange indices. All programming is written in R software. 

Based on the in-sample data, we estimated the adaptive model parameter in 4 stock 

market indices. Based in-sample data, this estimate is performed in Q (0.5). Table 1 presents the 

results as obtained for the 5% VaR. The results indicate that the model works well. 

 
Table 1 Estimation of In-Sample Parameters of Adaptive Model for 4 Stock Exchange Index. 

Adaptive Model 

parameter TEPIX 30CI  PCRI 50CI  

 

 

 

    

  798.410-5 241.110-4 107.810-3 494.110-4 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Plot of stock returns (PCRI). Fig. 1 Plot of stock returns (TEPIX). 

Fig. 3 Plot of stock returns (30CI ). Fig. 4 Plot of the stock returns (50CI ). 
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Now for testing the performance of the adaptive model, we considered the model selection 

criteria, such as MSE, MAE, and ME based on the out-of-sample data. The results are reported 

in Table 2. The overall results show that this methodology provides very accurate 

measurement of the VaR for the proposed data. We also present the real and forecasting 

values for the 30CI and PCRI in Figures 5 and 6 respectively. It is observed that the proposed 

model can be predicted the real values well. The results of the TEPIX and 50CI are similar.  

Table 2 The performance indices based on the‏Out-of-sample data. 

Adaptive Model 

50CI PCRI 30CI TEPIX  

1167695.27 10  
1010090.51 10  

1187156.35 10  1116439.72 10  MSE 

660.8817 10  
680.92356 10  

674.29467 10  623.96999 10  MAE 

622.03611 10  
651.05249 10  

657.62543 10  86132.336 10  ME 

 

 

 

 

 

 

 

 

    
     
5 Conclusion 
 

Considering the importance of fluctuations in the stock market, this paper introduces an 

adaptive model for estimating the VaR and forecasting the volatility in stock exchange data. 

Using the R Software, the parameter of the model is estimated and predicted. The results 

obtained from the performance indices are indicative of the superiority of the consistent 

model for estimating stock predictions based on the terms and conditions of the period. 

Therefore, it can be concluded that the proposed model has good performance in predicting 

stock exchange indices.  
 

 

 

Fig. 5 Real data and forecasting value for 

the 30CI. 

 

Fig. 6 Real data and forecasting value for 

the PCRI. 
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