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Abstract A complementary follow-on tool is required to optimize the geometric parameters of the
topology solutions once the flexure design topology of an active micro-architected material has been
synthesized. This will enable the production of final designs that not only meet the desired DOFs for
the constituent materials but also best meet the desired performance requirements. This paper
introduces a computational tool to identify the boundaries of the performance capabilities achieved by
general flexure system topologies, provided that their geometric parameters are allowed to vary from
their smallest allowable feature sizes to their largest geometrically compatible feature sizes for given
constituent materials. The boundaries fully define flexure systems' design spaces and allow designers
to visually identify which geometric versions of their synthesized topologies best achieve desired
combinations of performance capabilities.
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1 Introduction

A model that describes the performance of an active architecture design with a given set of
design parameters must be established to set up the optimization problem. This model can be
1-a real experiment, whose parameters can be arbitrarily changed or controlled, 2- a finite
element analysis (FEA)-based numerical model, 3- a closed-form analytical model for the
parameterized topologies, or 4- a regression model based on data generated by finite element
analysis or real experiments. This paper introduces a tool that can optimize the parameters of
flexure system topologies and be applied to a host of other diverse applications.

System performance boundary identification is a relatively new field of study, but it
shares many of the same objectives as the well-studied multi-objective optimization. A multi-
objective optimization problem (MOOP) deals with more than one objective function, which
aims to find a set of solutions to simultaneously optimize all the objective functions. Several
methods, such as the weighting method as one of the most widely used methods, have been
proposed to solve sets of local or global Pareto-optimal solutions [1]. The e-constraint method
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was first proposed by Haimes et al. [2], the method of the global criterion was first unveiled
by Yu [3], and the achievement scalarizing function (ASF) approach was first introduced by
Wierzbicki [4,5]. Other solving methods include normal boundary intersection (NBI) [6],
evolutionary algorithms (EAS) [7], lexicographic ordering [8], and goal programming [9].
More recently, MOOP methods have focused on stochastic optimization algorithms, including
various EAs [10,11]. Such algorithms generate more reliable global Pareto-optimal solution
sets but require significantly more function evaluations than deterministic algorithms and are
thus generally better suited for complicated black-box-model optimizations. The boundary
identification approach proposed in this paper has, in part, been adapted from various
deterministic MOOP methods such that the complete continuous boundary (including concave
portions) that circumscribe the performance capabilities achieved by general flexure
topologies can be identified and refined with a desired accuracy.

The utility of this computational tool combined with the current flexible assertive
community treatment (FACT) approach results in a novel advantageous approach that sets
itself apart from other existing design optimization approaches. Whereas other approaches,
e.g., topology optimization [12—14] or module optimization [15], simultaneously combine the
design typology optimization with geometry optimization tasks, the proposed approach
decouples those tasks in such a way that the time-consuming computations are reserved solely
for the simpler geometry optimization task only. This optimization occurs after the FACT
approach has directly generated and finalized the most promising topologies without
performing expensive iterative calculations. Thus, by decoupling the topology synthesis and
geometry optimization tasks, the speed at which optimal designs can be generated from start
to finish, as well as the likelihood of identifying the global optimum solutions, increases. The
boundary identification approach proposed in this paper has in part been adapted from various
deterministic multi-objective optimization methods such that the complete continuous
boundary (including concave portions) that circumscribe the performance capabilities
achieved by general flexure topologies can be identified and refined with a desired accuracy.

2 Performance boundary identification

The optimization problem is set up where a flexure system topology's design parameters are
the model inputs, x;, and the performance capabilities achieved by the design instantiations
defined by these corresponding input parameters are the model outputs, f;. Constraint
functions are also provided to define the combination of input values permissible.

A boundary search algorithm consists of two main processes: directional maximization and
gap reduction. Both processes rely on an optimization approach that implements two
numerical optimization methods, i.e., the Sequential Quadratic Programming (SQP) [16,17]
algorithm and Augmented Lagrangian Pattern Search (ALPS) [18-20] algorithm, to achieve
the local extremum of an objective function.

In each local optimization process, the SQP method is implemented first. The SQP
method starts with a given initial guess and attempts to compute, or "step to,” another ™ closer
" point to the local extremum. At each point, the gradient (derivatives) and Hessian matrix
(the symmetric matrix of second derivatives) of the objective function are approximated using
adjacent points and then used to construct a Quadratic Programming (QP) subproblem [21].
The solution of this QP subproblem is used to compute the step towards the next point. The
SQP process terminates when the "step™ is smaller than a prescribed resolution of the input
parameter in all directions x; or when it fails to generate the next point. This typically occurs
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because the derivatives or second derivatives of the specific objective function cannot be
correctly evaluated to set up the QP subproblem.

Once the SQP process terminates, the algorithm proceeds with the optimization process
by implementing the ALPS method to solve for the local extremum of the same objective
function, starting at the point corresponding to the best inputs (that generate the maximum or
minimum value of the objective function) identified using the SQP method. The ALPS
algorithm searches for a better value of the augmented Lagrangian function [22] among a set
of points, called a mesh, located around the current point (the center point of the mesh) at a
distance #r;, along the direction of each input parameter x;. The distance r; is called the mesh
size and is initially chosen to be between 10% and 30% of the total range of each x;. If there is
a point among the mesh points that increases the value of the augmented Lagrangian function
over the current mesh center point, it becomes the new center point in the next step, and the
mesh size r; increases by a factor of k, which is typically set to be 2. On the other hand, if no
improvements can be achieved from all the mesh points around the center point, the mesh size
decreases by a factor of k. The objective function converges to its extremum value by taking
these iterative steps. The ALPS process terminates when the mesh size is smaller than the
prescribed resolution in every direction.

A theoretical example of a system with only two inputs, x; and X, is used to conceptually
explain how the boundary search algorithm employs the local optimization approach to plot a
concave boundary that circumscribes the full system design space for two of the system's
achievable outputs, fi(x1, X2) and fo(X1, X2). Figure 8A shows the constraint function for this
theoretical example as the red spline boundary line.

The algorithm begins with the directional maximization process. Starting at an initial
guess, this algorithm first identifies a set of other allowable input combinations that result
from adding and subtracting the resolution increment of each input, Ax;, to and from the first
randomly selected combinations of inputs along each input's axis. In the example shown in
Figure 8A, this first set of input combinations is shown as the four blue dots immediately
surrounding the blue dot labeled O1 ;. Note that although Ax; is shown as equal to Ax,, these
resolution increments do not have to be equal for other scenarios. The system's model is then
used to map all these input combinations to their corresponding output combinations,
represented by the five blue dots shown in Figure 8B. The original input dot, O; 1, maps to the
output dot, Z; ;. The SQP algorithm then approximates the gradient and Hessian matrix of the
objective function defined by

J(x1,x3) = cos(8) f2(x1,x3) + sin(0) f1 (x4, x7), 1)

using the input and output combinations (i.e., the adjacent blue dots in Figure A and
Figure 8B), where 4 is initially set to 0, the largest f, output can be pursued first. This gradient
and Hessian matrix are then used to construct a QP subproblem. In the example shown in
Figure 8, the newly determined input combination is shown as the red dot labeled O, , (Figure
A). Note that the corresponding output combination of this dot, shown as the red dot labeled
Z;, (Figure B), possesses an f2 value larger than any of the previous blue dots. The SQP
algorithm then repeats this process by finding a new set of allowable input combinations. In
the example shown in Figure A, this new set of input combinations is shown as the four red
dots immediately surrounding the red dot labeled O;,. Note that each of the five red dots
shown in Figure A maps to a corresponding red dot in Figure B. Thus, the SQP algorithm
rapidly finds an efficient path toward a local maximum of the objective function by iteratively
stepping from one cluster of dots to the next.


http://dx.doi.org/10.71885/ijorlu-2024-1-658
http://ijorlu.liau.ac.ir/article-1-658-en.html

[ Downloaded from ijorlu.liau.ac.ir on 2026-01-29 ]

[ DOI: 10.71885/ijorlu-2024-1-658 ]

98 A. Sedaghat and et al./ IJAOR Vol. 12, No. 2, 95-103, Spring 2024 (Serial #41)

Once the SQP algorithm terminates, the boundary-plotting algorithm proceeds with the
optimization process by supplying allowable input combinations mapped to output
combinations that produce the largest objective-function value identified by the SQP
algorithm to the ALPS optimization algorithm. In the example shown in Figure A, the SQP
process could not step beyond the cluster of dots surrounding O;, and thus terminated. The
input combination supplied to the ALPS algorithm is illustrated by the red dot labeled O, 3 in
Figure A, which maps to the output combination (shown as the red dot labeled Z; 3 in Figure
B) that achieves the largest f, value found using the SQP algorithm. The ALPS algorithm
initially identifies a set of other allowable input combinations that result from adding and
subtracting an initial mesh size, r;, to and from the input combination supplied to the
algorithm along each input's axis. The initial mesh size, r2, in Figure A, is set to 20% of the
range of its corresponding input parameter (i.e., ri=0.2|Xi max-Ximin|)- In the example shown in
Figure A, the first set of ALPS-generated input combinations is depicted as the four purple
dots surrounding the red dot labeled O; 3. Although r; is shown as equal to r,, the mesh sizes
are not typically equal for other scenarios. The system's model is then employed to map these
input combinations to their corresponding output combinations, represented by the four purple
dots (Figure B). The ALPS algorithm then identifies if any of these input combinations map
to an output combination that produces an objective-function value larger than any previously
produced during the optimization process. Suppose, for instance, that the input combination
of the example O, 4 (Figure A) maps to the output combination Z; 4 (Figure B) that achieves
the largest f, value previously identified. The ALPS algorithm would then step to the dot
representing that input combination (e.g., O14). The algorithm would then identify a set of
other allowable input combinations that result from adding and subtracting the previous mesh
size (e.g., ri in this case) multiplied by an expansion factor (i.e., 2) to and from this input
combination along each input's axis. Thus, for the example shown in Figure A, the next set of
ALPS-generated input combinations are shown as the three orange dots surrounding the
purple dot labeled Oy 4. These orange input dots shown in Figure A map to the three orange
output dots shown in Figure B. The algorithm then identifies if any of these output
combinations produce an objective-function value larger than any previously produced during
the optimization process. Since none of the orange dots in Figure B possess an f, value larger
than Z, 4, the ALPS algorithm would then identify a set of other allowable input combinations
that result from adding and subtracting the previous mesh size (e.g., 2r; in this case) divided
by the same expansion factor to and from the input combination O, 4 in Figure A along each
input's axis. Therefore, for the example shown in Figure A, the next set of ALPS-generated
input combinations are shown as the three light-green dots surrounding the same purple dot
labeled O;4. These light-green input dots shown in Figure A map to the three light-green
output dots shown in Figure B. Again, since none of the light green dots in Figure B possess
an f, value larger than Z; 4, the ALPS algorithm would then identify another set of other
allowable input combinations that result from adding and subtracting the previous mesh size
(e.g., ri in this case) divided by the same expansion factor to and from the input combination
O14 In Figure A along each input's axis. Thus, for the example shown in Figure A, the next set
of ALPS-generated input combinations are shown as the four dark-green dots surrounding the
same purple dot labeled O;4. This process repeats until either (i) one of the new input
combinations maps to an output combination with an objective-function value larger than any
produced previously, or (ii) the mesh size becomes equal to or less than a specified input
tolerance, which herein is set to the resolution of the input parameters, Axi. If the first option
(i) occurs, the ALPS algorithm will step to the improved input combination, and the ALPS
process will continue to iterate. If the second option (ii) occurs, it will terminate. For the
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example shown in Figure A, the second option occurred as the mesh size of the four yellow
dots shown immediately surrounding the purple dot Oy 4 is equal to Ax,, and none of the new
output dots generated ever surpassed the f, value of Z; 4, as depicted in Figure B.

S __Constraint (B)
(A) ~__~ Function Zia
- e NS i =0
| Gl % N T 8=n8
S e "
B | 22— o
« .
v/'b
Ziy
= X1,Y1) >
A Constraint A
(©) ___~—Function (@)
i '\'f\' -\-‘\-\- --0=0
! oo oS 0oy
" s :K« ~0=00
= E " ®
2y Iy,
.
LN
> >

Fig. 1 Progression of the SQP and ALPS optimization algorithms for =0 initialized in the objective function in
the input space (A) and the corresponding output space (B).

Continued progression of the same optimization algorithms for 6=A6@ incremented in the
objective function in the same input space (C) and the corresponding output space (D).

Once the SQP and ALPS algorithms have both run their full course for determining the
maximum value of J(xi, Xo) from Equation (1) for =0, & is then incrementally increased by
A@, which is typically set to a value between /10 and n/20. Using this new 0 parameter, the
algorithm then computes the value of the objective function in Equation (1) for all existing
input combinations, which, for the example illustrated in this section, are shown as the dots in
Figure A. From among these input combinations, the one that produces the maximum
objective function value for =A@ corresponds to the input combination represented by the dot
labeled O, in Figure 8A, which maps to the output combination represented by the orange
dot labeled Z,; in Figure B. The algorithm would then supply the SQP algorithm with this
input combination to generate more input combinations that produce larger objective function
values as described previously. The four blue dots immediately surrounding the dot labeled
O, in Figure C would be identified first for the example depicted in this section using this
approach. These dots map to the four new blue dots shown in Figure D surrounding the dot
labeled Z, 3. The SQP algorithm would then identify the next input combination (e.g., Oz
shown in Figure C) that produces a larger objective function value. Note that the input
combination dot O,, maps to an output combination dot Z,, (Figure D) farther away along
the direction prescribed by the new @ value (i.e., Ad). As the SQP algorithm continues, four
other input combinations will be identified immediately surrounding the input combination
dot Oy, (colored red) in Figure C. The SQP algorithm would continue in this way until it
terminates. The ALPS algorithm would then take over where the SQP algorithm left off, as
described previously until the former terminates as well. Once the ALPS algorithm
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terminates, the algorithm will have found the input combination that achieves the maximum
objective function value identified from among those previously tested for 6=A6.

The algorithm iterates this pattern of steps to identify the combinations of output values
that lie farthest away along their prescribed directions defined by their corresponding 6 value
in a clockwise fashion until 6>2x (i.c., all the directions have been swept). Any time before 6
is incrementally advanced, the objective function of Equation (1) is rechecked for every
combination of input values evaluated up to that point to ensure each of the previously
identified output dots that used to be the farthest away along their prescribed directions are
still the farthest away. If a new dot is ever identified to be farther away than a previous dot
along a specific direction ¢ (i.e. if a new dot exceeds the dashed lines in Figure B), the
iterative process is reset to that direction, and the process continues using that improved
output dot.

Once the directional maximization process is complete, the a-shape of all the
combinations of output value points is identified and plotted as the boundary. Many systems
produce a cloud of output dots that form a concave—not convex—region like the one shown
in Figure A. If the boundary of such a cloud of output dots is identified, the result would be
the red boundary shown in Figure B. This boundary would grossly overestimate the
achievable performance space of the actual system since it is convex rather than concave, like
the cloud of output dots. Thus, the algorithm adopts the gap reduction process to address this
issue to reduce the gap size along the boundary curve.
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Fig. 2 Generated output dots (A); initially identified convex boundary (B); new objective function minimized to
identify other output dots within circular or elliptical regions (C); elliptical contour plot of the new objective
function with R=2 (D); boundary updated with a new hy,,, value (E); the process successfully identifies concave
boundaries (F)
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This gap reduction process starts with identifying all the vectors that point from each
output dot along the existing boundary to their neighboring dots on the same boundary. The
magnitude, hnax, OF the longest vector is identified because this vector points between the two
output dots (e.9., Zn1 and Znz, shown in Figure B) that usually correspond to the opening of a
previously unknown concave boundary. The algorithm then computes a new objective
function, Jg(x1, X2), defined by

2 2
Jg(x1,%2) = (Cogza + Sinza) (f1 (1, x2) — f—l’Zhl;rfl’th) (@)
5 2
n (Sl;lza n COSza) (fz (xy, 2%5) — f2,Zh1‘2|'f2,Zh2

+2sin a cosa (% - 1) (fl (x4, %) — M) (fz (x1,%,) — fz,zm;rfz,zhz)

for all the input combinations previously evaluated with R=1. This objective function is
minimized to identify output combinations that lie within circular or elliptical regions like
those shown in Figure C. The region is circular if R=1 in Equation (2). However, if R
increases, it becomes an increasingly elongated ellipse, as shown in Figure C. The angle, «, in
Equation (2) is defined by

f1,zh2 +f1,Zh1> (3)

a = arctan(
f2,zn1+f2,zn2

where f1 zn1 and f, zn; are the horizontal and vertical components of Zy;, while 1 zn, and f2, zn2
are those of Zy, (Figure C). After computing the objective function of Equation (2) for all the
previously evaluated input combinations for R=1, it identifies the existing input combination
that produces the minimum objective function value. This input combination maps to the
output combination closest to the center of the circle shown in Figure C. If no output dots are
found within the circle, the input combination corresponding to either the output dot Zp; or Zp,
will be chosen as the closest to the center of the circle and is thus supplied to the previously
described SQP and ALPS algorithms to evaluate new input combinations. For the example
shown in Figure, a new group of blue output dots (Figure C) is generated after optimization.
Since none of these output dots lies within the center of the circle, the previous R-value in the
objective function of Equation (2) is multiplied by a factor of 2, and the search region is
expanded to an ellipse shown in Figure C. Figure E displays an elliptical contour plot of Jg(Xa,
Xp) for this R-value (i.e. R=2). If no output dots are found within the new ellipse, the process
continues to iterate by multiplying the previous R-value by the same factor of 2 to further
increase the elliptical search region. For the example shown in Figure C, however, output dots
lie within the elliptical search region corresponding to an R-value of 2. Therefore, the input
combination that maps to the output dot that lies within this region and possesses the
minimum objective function value for R=2 is supplied to the SQP-ALPS optimization
algorithm to identify an even better output dot that achieves an even smaller objective
function value. This process will produce new output dots (e.g., the new set of orange dots
shown in Figure 9). Whether or not these new output dots achieve a smaller objective function
value, the output dot that obtains the minimum objective function value is identified and
considered part of the system's performance boundary. It is thus redefined as either Z,; or Zp,.
In the example shown in Figure E, the Zn, output dot is redefined. Note also that hpax IS
updated as well. This boundary learning process is repeated until both (i) the horizontal
component of the boundary vector with the largest magnitude (i.e., hmax) is less than a set
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percentage of the horizontal distance across the full cloud of output values, and (ii) the
vertical component of the same vector is also less than the same percentage of the vertical
distance across the same cloud. This percentage threshold is typically set between 5% and
10%.

Additionally, before the largest boundary vector is updated with a new magnitude (i.e.,
hmax), the entire optimization process in this section is repeated using the previous objective
function in Equation (2) for all 8 values. This is to ensure that any new dots evaluated using
that objective function are allowed to improve the accuracy of the boundary if possible.
Accordingly, both convex and concave boundaries, like the concave boundary shown in
Figure F, can be identified that accurately define the achievable performance space of the
system.

3 Conclusions

To set up the optimization problem, a model needs to be established that describes the
performance of an active architecture design with a given set of design parameters. This
model can be a real experiment, of which the parameters can be arbitrarily changed and
controlled, a numerical model based on finite element analysis, a closed-form analytical
model of the parameterized topologies, or a regression model based on data generated by
finite element analysis or real experiments. Note also that although the tool is introduced in
this paper as a tool for optimizing the parameters of flexure system topologies, it could also
be applied to a host of other diverse applications.

Although few researchers have directly attempted system-performance boundary
identification, its goal is similar to the goal of multi-objective optimization, which has been
studied extensively. A multi-objective optimization problem (MOOP) deals with more than
one objective function and aims at finding a set of solutions that optimizes all the
objective functions simultaneously. Several methods have been proposed to solve the local or
global Pareto-optimal solution set. The boundary identification approach proposed in this
paper has in part been adapted from various deterministic multi-objective optimization
methods such that the complete continuous boundary (including concave portions) that
circumscribe the performance capabilities achieved by general flexure topologies can be
identified and refined with a desired accuracy.
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