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Abstract In this paper, we introduced a distributed order time fractional Coronavirus-19 disease 

transmission involving Caputo-Prabhakar fractional derivative of α order in time t. The coronavirus 19 

disease model has 8 inger dients leading to system of 8 nonlinear ordinary differential equations in this 

sense. To solve these types of equations, we proposed a numerical method based on the upon 

Legendre wavelets optimization approximations. In the first stage, by applying the Legendre wavelets 

optimization functions and Laplace transform an exact formula for the Prabhakar fractional integral 

operator is derived. Then, we apply this exact formula and the properties of Legendre wavelets 

optimization functions to change the given equation into a system of algebraic equations. We 

calculated the approximation optimal solutions of our system applying the Newton’s iterative method. 

The optimal approximate solutions obtained by using the proposed method are considered as the best 

solutions for the proposed equation. Error analysis is examined to verify the practical efficiency of the 

proposed method. In the end, for the efficiency and performance of the proposed method, the 

numerical results are shown in the figure. 

 

Keyword: COVID-19 Virus, Distributed-Order, Legendre Wavelets Optimization Approach, Caputo-

Prabhakar Derivative, Error Analysis. 

 

 

1 Introduction 

  In this Section, we consider the following distributed order time fractional Coronavirus-19 

disease (COVID-19) model:  

                                               
                                                    
         
                               
                                  (1) 

                                      

                                                           
* Corresponding Author. () 

E-mail: ah_refahi@yahoo.com (A.H. Refahi Sheikhani) 

 

M. Khasteh  

Department of Applied Mathematics, Faculty of Mathematical Sciences,  Lahijan Branch, Islamic Azad University, Lahijan, Iran 

 

A.H. Refahi Sheikhani  

Department of Applied Mathematics, Faculty of Mathematical Sciences,  Lahijan Branch, Islamic Azad University, Lahijan, Iran 

 

F. Shariffar  

Department of Applied Mathematics,  Fouman and Shaft Branch, Islamic Azad University, Fouman, Iran 

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
24

-1
-6

61
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
or

lu
.li

au
.a

c.
ir

 o
n 

20
26

-0
1-

29
 ]

 

                             1 / 18

http://dx.doi.org/10.71885/ijorlu-2024-1-661
http://ijorlu.liau.ac.ir/article-1-661-en.html


26 M. Khasteh, et al./ IJAOR Vol. 12, No. 2, 25-42, Spring 2024 (Serial #41) 

 

                                      
                                               
                   
 subject to the initial conditions:  

                                                      
            (2) 

 in which all parameters are positive and their physical interpretation are studied in [1]. In 

Equation      , the function      is the class of susceptible, the function      is the class of 

asymptomatic infected, the function      is the class of infected asymptomatic infected 

undetected, detected, the function      is ailing symptomatic infected, undetected, the 

function      is recognized symptomatic infected, detected, the function      is the class of 

acutely symptomatic infected detected, the function      is the healed class and the function 

     is the death class. Also, and       shows the distributed order Caputo-Prabhakar 

fractional operator of   order in time   such that        . 
The COVID-19 are a large collection of viruses which have a specified corona or ’crown’ 

of sugary-proteins and because of their form, they were called COVID-19 in 1960. Due to the 

world health organization (WHO), COVID-19 is spreaded via people who have been infected 

with the corona virus. The virus may quickly transmit via small drops from the mouth 

compilation or nose of anybody infected via this virus to cough or sneeze. The small drops 

then land on surfaces or objects which are touched and the healthy person regulates their nose, 

mouth or eyes. For the first time in the Wuhan city the COVID-19 was appeared that this 

virus has not been previously known in humans. Bats or snakes have been skepticed as a 

potential source for the prevalence, though other experts currently consider this unlikely. 

Cough, fever, breathing difficulties and shortness of breath are the initial signs of this 

infection. In the next stages, the infection may reason pneumonia, kidney failure, even death 

and severe acute respiratory syndrome. 

Differential equations with distributed order fractional derivatives and obtaining their 

numerical solutions using the analytical and numerical methods are a useful tool to describe 

important applications in the different fields of physics [2, 3], chemistry [4], mathematics [5] 

and engineering [6]. For the first time in 1960s by Caputo’s is studied the distributed-order 

differential equation [7] to expand the stress-strain equation of inelastic media. Later in [8], 

the multi-term viscoelastic equation of fractional order as a model of distributed-order 

equation is developed. the differential equation of distributed-order is considered as a 

extension of the differential equation of multi-term fractional order. Recently,the numerical 

schemes obtaining the numerical solutions for a class of distributed order fractional 

differential equation with fractional derivative have been studied, for example, Fei et al. [9] 

studied a numerical method based on the Galerkin-Legendre spectral method to numerically 

solve a two-dimensional time fractional fourth-order partial differential equation of 

distributed-order. Zaky et al. [10] studied a numerical method based on the Legendre spectral-

collocation method to numerically solve a distributed-order fractional initial value problems. 

Zhang et al. [11] studied a numerical method based on the Crank-Nicolson ADI Galerkin-

Legendre spectral method to numerically solve a two-dimensional Riesz space distributed-

order advectionвЂ“diffusion equation. The nonlinear fractional differential equations of 

distributed-order are solved by using LegendreвЂ“Gauss collocation method by Xu et al. 

[12]. Dehghan et al. [13] studied a numerical method for solving fractional damped diffusion-

wave equation of distributed-order by using spectral element method. Guo et al. [14] studied a 

solution for the two-dimensional distributed-order time-space fractional reaction-diffusion 

equation by using Legendre spectral element method. Morgado et al. [15] studied a solution 
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for the distributed order time-fractional diffusion equation by using Chebyshev collocation 

method. Mashayekhi et al. [16] studied the synthetic of block-pulse functions and Bernoulli 

polynomials, Gorenflo et al. [17] studied the Fourier and Laplace transforms for solving the 

one-dimensional distributed order diffusion-wave equation, Li et al. [18] proposed a classical 

numerical quadrature method, Aminikhah et al. [19] used a combined method based on the 

Laplace transform and new homotopy perturbation method To solve a particular class of the 

distributed order fractional Riccati equation, Mashoo et al. [20] studied the stability of two 

classes of distributed-order Hilfer-Prabhakar differential equations, Mashoo et al. [21] 

proposed the stability of distributed order differential equations form of Hilfer-Prabhakar, 

Aminikhah et al. [22] proposed two numerical methods to solve the distributed-order 

fractional Bagley-Torvik equation by the fractional differential transform and Grunwald-

Letnikov method, Ye et al. [23] applied a compact difference method, Mashoof et al. [24] 

studied an operational matrix for solving the fractional differential equations of distributed 

order, Yuttanan et al. [25] studied a numerical method based on the upon Legendre wavelets 

polynomials for solving linear and nonlinear distributed fractional differential equations, the 

existence and uniqueness for differential equations of distributed order proposed by Ford et al. 

[26] , the uniqueness of solutions for time-fractional diffusion equations of distributed order 

on bounded domains proposed by Luchko [27], Bhrawy et al. [28] proposed a numerical 

method based on the Jacobi-Gauss-Lobatto collocation method to solve Schrödinger 

equations of distributed order and Kharazmi et al. [29] studied a solution for the fractional 

partial differential equations of distributed order by using pseudo-spectral method. 

The main aim of this paper is to study an efficient numerical method to numerically solve 

Equations      and      . This efficient numerical method is based upon Legendre wavelets 

optimization approach. For the first time, we derive an exact formula for the Prabhakar 

fractional integral operator in terms of Legendre wavelets optimization functions. Then, by 

using this exact formula for the Prabhakar fractional integral operator, we transform the 

solution of the distributed order time fractional Coronavirus-19 disease model to the solution 

of algebraic equations. 

The outline of this paper is organized as follows. In Section 2, we briefly introduce the 

mathematical preliminaries and some necessary definitions which are required for our 

problem. Also, in this Section, we express the wavelets and Legendre wavelets optimization 

functions. In Section 3 , we express the approximation function and also, we describe the 

RiemannвЂ“Liouville fractional integral operator for Legendre wavelets optimization 

functions. In Section 4, we derive a numerical method to numerically solve Equations      

and      . In Section 5 , the error bound is studied. In Section 6, some examples are 

demonstrated to show the reliability and validity of the proposed method. In the end, in 

Section 7, the main and important conclusions of the proposed method are highlighted. 

 

 

2 Preliminaries 

 

 In this Section, we study the basic, important definitions and some essential lemmas of 

fractional calculus which will applied for later. Moreover, we display important properties of 

the wavelets and Legendre wavelets optimization functions.  

Definition 1 [30-33] Let               and           such that        
   . Then, for a function  , the Riemann–Liouville fractional integral of order   and 

Riemann–Liouville fractional derivative of order   are given respectively by  
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∫  

 

 
                (3) 

  

     
      

 

      

  

   ∫  
 

 
                  (4) 

 

 

  

Definition 2 For         and         . Then, the Caputo fractional derivative of order 

  is given by  

   
   

         
    

  
     

 

      
∫  

 

 
        

  
        (5) 

 

 

 In the recent years, one of the fractional operators that has attracted the attention of many 

authors is Prabhakar fractional operator. This fractional operator is as generalization of 

derivatives of both Riemann–Liouville and Caputo types. Indeed, this type of derivative is 

similar to the Riemann–Liouville derivative with a more general integral operator with the 

kernel  

                    
 

                

 in which     
 

 is the Prabhakar function and studied by Prabhakar in 1971 [34],  

     
 

    ∑   
   

      

           

  

  
                    (6) 

 In case     we have  

     
     

 

    
  

Moreover, in case    , we find the widely known function as two–parameter Mittag–

Leffler, i.e.  

     
             ∑   

   
 

       
    

 by putting      , Eq.      converts to the classical Mittag–Leffler function, i.e.  

     
           ∑   

   
 

       
    

 

 

Definition 3 Suppose that                 and          ,          
 . Then the Prabhakar fractional integral of order   with           is defined by  

         
 

     ∫  
 

 
            

 
                                   (7) 

 in which     
 

 is defined in      .  

 

 

Definition 4  For           the Prabhakar fractional derivative of order   with         
  is defined by  

         
 

     
  

             
  

              (8) 

 

Definition 5  The Caputo–Prabhakar derivative of order   with           is defined by  

   
        

 
               

    

         (9) 

 It has the following property  
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                        (10) 

  

Definition 6 The distributed order derivative of order        that        is the 

distribution function of order      , of function      is given by [35]:  

            ∫  
 

 
             

 
          (11) 

 in which          
 

 is the Caputo–Prabhakar derivative of   of order       with 

          ,        is the weight function and  

 ∫  
 

 
              (12) 

 Also, the Laplace transform of the Caputo–Prabhakar derivative of order       with 

respect to   is given by:  

           
 

                                           (13) 

 in which      is the Laplace transform of   and defined by      ∫  
 

 
          .  

  

Lemma 1 [34] Let           and              . Then, we have:  

           
 

                                 

  

  

2.1 Wavelets and Legendre wavelets optimization functions 

 

 This Section recall a description and study of the wavelets and Legendre wavelets 

optimization functions. Wavelets constitute a collection of functions made from translation of 

a single function and dilation called the mother wavelet. When the dilation parameter   and 

the translation parameter   vary continuously, we have the following collection of wavelets 

that theses collection of wavelets are continuous, as follows [36]:  

             
 

    
   

 
   (14) 

 where       and    . Limitation of the constants   and   to discrete values such as 

    
          

   and      , where           yields the following family of 

discrete wavelets:  

             
 

      
         (15) 

 where in Equation       , the function         is the wavelet basis for      . Let      . 

Then, the Legendre wavelets optimization functions         on the interval        for 

               and               are defined as:  

         { 
 

 √  
 

 
   

  

  
           

    

     
  

      

            

 (16) 

 in which       in Equation       are the famous Legendre polynomials of order  . The 

Legendre polynomials of order   satisfy the following recursive relarion:  

                  

         
    

   
       

 

   
         (17) 

 and the analytic form of the Legendre polynomials of order   is given as:  

           ∑   
     (

 
 

) (
     

 
 

)  

 where (
 
 

)  
              

  
. Also, the family of Legendre wavelets optimization functions 
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with respect to the weight function are an orthonormal family.  

 

 

3 Function approximation 

 

 Let              be the space spanned by a family of         for                and 

              that the space      is defined by:  

      
                                                                          

 Let              that the function      is an arbitrary element. Then, we have:  

                      
 where   is a unique best approximation of  . Since   has the unique best approximation as  , 

then, we have:  

        ∑      

   ∑     
                       (18) 

 where      is the Legendre wavelets optimization functions coefficients and  

                                                                          

      
                                                                      (19) 

 Due to orthonormality property of the set of Legendre wavelets optimization functions, the 

coefficients      are given in Equation       can be computed applying  

      
              

                 
                ∫  

 

 
               (20) 

 where       shows the inner product of the Hilbert space        .  
Theorem 2  Let         be the Legendre wavelets optimization functions which is introduced 

in Equation       . Then, we have:  

            
 

 
  √  

 

 
 

 
     

   

  ∑   
   ∑   

   
  

  
(
 
 

) (
     

 
 

)  
  

  
      

  

          
 

      
  (21) 

 where   represents the Laplace transform.  

    Proof. The Legendre wavelets optimization polynomials         in Equation       can be 

rewritten in terms of unit step function    as follows:  

          
 

 √  
 

 
     

    
   

  

  
        

     

    
 

 

 √  
 

 
   

  

  
         (22) 

 where    is defined by:  

    {
      
      

 

 By taking the Laplace transform from Equation       , we obtain:  

                   
 

 √  
 

 
       

    
   

  

  
   

    

            

   
 

 √  
 

 
     

    
   

  

  
   

  

            

  
 

 √  
 

 
 

 
    

     
     

  

  
        

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
24

-1
-6

61
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
or

lu
.li

au
.a

c.
ir

 o
n 

20
26

-0
1-

29
 ]

 

                             6 / 18

http://dx.doi.org/10.71885/ijorlu-2024-1-661
http://ijorlu.liau.ac.ir/article-1-661-en.html


A numerical method for solving distributed order time fractional COVID-19 virus… 31 

 

   
 

 √  
 

 
 

 
  

     
     

  

  
         (23) 

 By applying the definition      , we have:  

            
 

 √  
 

 
 

 
    

     
    ∑   

    
  

  
     (

 
 

) (
     

 
 

)     

   
 

 √  
 

 
 

 
  

     
    ∑   

    
  

  
     (

 
 

) (
     

 
 

)     

   
 

 
  √  

 

 
 

 
  

     
∑   

   (
 
 

) (
     

 
 

) 

    
    

    
  

  
          

  

  
          (24) 

 Using the definition of binomial expansion, we obtain:  

            
 

 
  √  

 

 
 

 
  

     
∑   

   (
 
 

) (
     

 
 

) 

    
    

    ∑   
   (

 
 
)       

  

  
           ∑   

   (
 
 
)  

  

  
          

   
 

 
  √  

 

 
 

 
     

   

  ∑   
   ∑   

   
  

  
(
 
 

) (
     

 
 

)  
  

  
      

  

          
 

        (25) 

 Then, the result is proved.     

Theorem 3  Let         be the Legendre wavelets optimization functions which is introduced 

in Equation       . Then, we have:  

         
 

        

{
 
 
 
 

 
 
 
                                         

    

      

 
 

 
  √  

 

 
∑   

   ∑   
   

  

  
(
 
 

) (
     

 
 

)             

           
 

     
    

     
                                   

    

     
  

      

 
 

 
  √  

 

 
∑   

   ∑   
   

  

  
(
 
 

) (
     

 
 

)                

           
 

     
    

     
                           

 
     

  

     
      

  

     

 

 

    Proof. Applying the definitions of Prabhakar integral and the Laplace transform, we have:  

           
 

                     
 

                 

            
 

                       (26) 

 where   is the convolution operator. Using the Theorem 2 and the Lemma 1, yields:  

           
 

            
 

 
  √  

 

 
 

 
     

   

  ∑   
   ∑   

   
  

  
(
 
 

) (
     

 
 

)  
  

  
      

  

          
 

                 
  (27) 

 Applying both sides of Equation       by inverse Laplace transform yields:  

         
 

         
 

 
  √  

 

 
∑   

   ∑   
   

  

  
(
 
 

) (
     

 
 

)  
  

  
     

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
24

-1
-6

61
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
or

lu
.li

au
.a

c.
ir

 o
n 

20
26

-0
1-

29
 ]

 

                             7 / 18

http://dx.doi.org/10.71885/ijorlu-2024-1-661
http://ijorlu.liau.ac.ir/article-1-661-en.html


32 M. Khasteh, et al./ IJAOR Vol. 12, No. 2, 25-42, Spring 2024 (Serial #41) 

 

      
 

 
    

  
   

     

                 
 

 
 

  

  
   

                 
    

   
 

 
  √  

 

 
∑   

   ∑   
   

  

  
(
 
 

) (
     

 
 

) 
  

  
     

        

    
                       

 
     

    

     
   

     

    
                  

 
     

  

     
     (28) 

 By applying equation       , we consider the following three cases: 

Case 1: for      
    

  
   , we have         

 
         . 

Case 2:for    
    

     
  

     , we have: 

 

         
 

         
 

 
  √  

 

 
∑   

   ∑   
   

  

  
(
 
 

) (
     

 
 

)               

            
 

     
    

  
   

    (29) 

 Case 3:for   
  

    , we have: 

 

         
 

         
 

 
  √  

 

 
∑   

   ∑   
   

  

  
(
 
 

) (
     

 
 

) 

                          
 

     
    

     
   

                       
 

     
  

     
     (30) 

 Then, the proof of this theorem is ended.     

 

 

4 Solution of the COVID-19 model 

 

 In this Section, we study a matrix numerical method to approximate the solution of the 

COVID-19 model      . For this aim, we apply Legendre wavelets optimization functions to 

numerically solve the COVID-19 model      and      . We first approximate the Caputo 

derivative of the unknown function                                    and      applying 

Equation       as follows:  

          
 

       
       

          
 

       
       

          
 

       
       

          
 

       
       (31) 

          
 

       
       

          
 

       
       

          
 

       
       

          
 

       
       

 where for        , the coefficients    is given by:  

   
       

        
      
         

        
      
           

        
        
       

 Then, for simpleness of sentence, we let that                           
                      ,       . By taking the Prabhakar integral from both 
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sides Eq.       , we get:  

              
 

         
 

      

              
 

         
 

      

              
 

         
 

      

              
 

         
 

      (32) 

              
 

         
 

      

              
 

         
 

      

              
 

         
 

      

              
 

         
 

      

 By applying Eq.       , yields  

        
          

 
      

        
          

 
      

        
          

 
      

        
          

 
      (33) 

        
          

 
      

        
          

 
      

        
          

 
      

        
          

 
      

 By applying the definition of the vector function      we have:  

         
 

              
 

                  
 

             

          
 

                     
 

             
   

 Assume that  

         
 

            
                                         

 in which  

           
            

       
      

       
        

              
    

         
 

                  

 

Thus,  

         
 

     

[
 
 
 
     

          
     

      

     
        

   

       

    
               

          
      

          
        

        

]
 
 
 
 

     

               (34) 

 where            is called the Prabhakar fractional integration matrix for the Legendre 

wavelets optimization functions, that these coefficients are calculated in the Theorem 3. Then 

we have from Equations       and       that  

        
              

        
              

        
              

        
              (35) 
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 By applying the definition of distributed order derivative, substituting Equation       into 

Equation      , we have:  

        ∫  
 

 
       

             
       

           
       

           
    

     
           

       
           

      

        ∫  
 

 
       

            
       

           
       

           
    

     
           

       
           

                
           

     

        ∫  
 

 
          

           
            

           
     

        ∫  
 

 
          

           
               

           
     (36) 

        ∫  
 

 
          

           
       

           
        

    
           

     

        ∫  
 

 
          

           
       

           
        

    
           

     

        ∫  
 

 
          

           
       

           
    

     
           

       
           

       
           

     

        ∫  
 

 
          

           
     

 By using the Gauss–Legendre numerical integration which is given in [37]. First, the integral 

in Equation       , is computed, then , we collocate at Newton–cotes nodes    defined by:  

    
    

   
                  (37) 

 we obtain  

         ∑   
    

 

 
    

 

 
 

 

 
                   

       
            

    

     
            

       
            

       
            

      

         ∑   
    

 

 
    

 

 
 

 

 
                  

       
            

    

   
            

    

     
            

       
            

                
            

     

         ∑   
    

 

 
    

 

 
 

 

 
     

   
            

            
            

     

         ∑   
    

 

 
    

 

 
 

 

 
        

            
           

    
            

     (38) 

         ∑   
    

 

 
    

 

 
 

 

 
     

   
            

       
            

            
            

     

         ∑   
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         ∑   
    

 

 
    

 

 
 

 

 
        

            
     

 in which    and    are weights of GaussвЂ“Legendre and nods of GaussвЂ“Legendre, 

respectively, that theses weights of GaussвЂ“Legendre and nods of GaussвЂ“Legendre are 

given in [37]. By applying the Newton’s iterative method, we can be calculated the unknown 

parameters    in Equation       . The initial guess for solving Equation       using the 

Newton’s iterative method can be calculated similarly by the method studied in [38]. To 

select the initial guesses for solving Equation       using the Newton’s iterative method, in 

the first stage, we put     and    , then we solve Equation       applying the Newton’s 

iterative method. In this stage, we calculate an approximation solution to our system. In the 

next stage, we put     and increase the value of  , considering the initial guess in the first 

stage, we obtain the approximate solution in this stage. We follow this approach until the 

desired results are achieved. By determining the unknown parameters    in Equation       , 

the approximate solutions of                                    and      can be obtained.  

 

 

5 Study and check error analysis 

 

 In this section, we present the convergence and error analysis for the proposed method. Here 

we define the Sobolov space of order   that   is a integer as follows:  

                                         (39) 

 in which the derivative              is in the sense of distribution [37]. 

 

Lemma 4  Suppose that          ,     and     
   

     
 

     . Also, let   ∑      

     , 

that          . If                              and   
          be the best 

approximation of   , that                   
  and                             . 

Then, we have  

                                         (40) 

 where                 and   depends on  .  

    Proof. Let   
     ∑   

        . Since   
     is the polynomial of best approximation of 

      [37]. Thus from equation (5.4.11) in Ref. [37] displayed that      .     

Lemma 5  Suppose the assumptions of the Lemma 4, hold. Then, we for     have  

                                              (41) 

  

    Proof. Consult [39].     

Lemma 6  Suppose the assumptions of the Lemma 4, hold. Then, we for     and     
  have  

   
        

 
                                                      (42) 

  

    Proof. Using Eq.      and by triangular and Hölder inequalities, we obtain  

 |  
        

 
          |  ∑      

   ∫  
  

(∑   
              )        

       

  ∑      

   ‖       
   ‖      ∫  

  
∑   

                  

 in which    
         

                
. Due to the definition of the Prabhakar function the 
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summations inside the above integrals are convergent. Consequently, by calculating the 

integrals and recalling that the length of each subinterval    is       , we get  

 |  
        

 
          |  

∑      

   ‖       
   ‖        

       ∑   
   

  

      
  

 With a simple calculation, we have ∑   
   

  

      
       

  
   . It follows from Eq.      that 

∑   
   

  

      
       

  
    Then, we from Lemma 5 conclude that  

 |  
        

 
          |                 

  
   ∑      

   ‖       
   ‖       

               
  

   ‖         ‖        

                                        

 The above equation shows that the proof is complete.   

 

Lemma 7  Let           such that    ,   ∑      

      and   
       be the best 

approximation to   
        

 
   from   . Then for         we get the following inequality:  

                                                            (43) 

  

    Proof. Let              
 

  
            

 
    , than due to Eq.       , we have 

                     
 

      . Then,  

 |                   |  |        
 

(  
            

 
           )| 

 applying the equation      and by triangular and Hölder inequalities, we get  

 |                   |  

∑      

   ∫  
  

(∑   
                )|  

            
       

  |   

  ∑      

   ‖  
            

       
  ‖

      
∫  
  

∑   
                    

 in which    
        

             
. With a similar process in the proof of Lemma 6, we get  

 |                   |  

∑      

   ‖  
            

       
  ‖

      
       ∑   

   
  

    
  

 Because ∑   
   

  

    
       

 
   . Then, we from Lemma 6 have  

 |                   |               
 

   ∑      

   ‖  
            

     

  
  ‖

      
 

                 
 

   ‖  
            

        ‖
       

 

                                      

 It follows that  

 ‖           ‖
       

 
 ∫  

 

 
|                 |

 
   (44) 

          
                              

   

 that completes the proof.     
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 Fig. 1 Numerical experiments of susceptible class for      ,       and various values of   and  . 

   

 
Fig. 2 Numerical experiments of infected asymptomatic infected undetected class for      ,       and 

various values of   and  . 

   

 

 
  
Fig. 3 Numerical experiments of asymptomatic infected class for      ,       and various values of   
and  . 
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Fig. 4 Numerical experiments of healed class for      ,       and various values of   and  . 

   

 
  

Fig. 5 Numerical experiments of ailing symptomatic infected class for      ,       and various values 

of   and  . 

   

 
 Fig. 6 Numerical experiments of recognized symptomatic infected class for      ,       and various 

values of   and  . 
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 Fig. 7 Numerical experiments of acutely symptomatic infected detected class for      ,       and 

various values of   and  . 

   

 
  
Fig. 8 Numerical experiments of death class for      ,       and various values of   and  . 

   

 

6 Numerical experiments 

 

 Measurement-induced COVID-19 conductions demonstrate an interesting and attractiving 

novel class of phase conduction which appear light on the resilience of the present type of 

viruses against a known one. They were initially discovered for systems at integrable models 

and ordinary differential equations dynamics. To show the practicability and the efficiency of 

the proposed approximation method based on upon Legendre wavelets optimization approach, 

we demonstrate test examples and find their approximation solution via the method discussed 

in the previous section. We apply the proposed approximation method to numerically solve 

the system      to investigate the accuracy and capability of the proposed method. Moreover, 

for all cases, we put     . In all computations, we use here all the computations done in 

Matlab (R2020b) software for the problems implemented in numerical experiments and all 

obtained numerical results are computed with ten considerable digits. Taking    
    

   
   

               we have solved this given model in Equation      with various values of   
and  . The numerical results for       and various values of   and   are shown in Figs. 1-

7 and 8. To show the behavior of this virus model with contacting to infected or 
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asymptotically infected, we demonstrated the graph of the approximate solutions of 

                                   and      for       and various values of   and  . In 

Figs. 1-7 and 8, the approximate solutions of                                    and      

obtained by the proposed method plotted by           and     (left) and       
        (right) are shown. Fig. 1 display the approximate solutions of the class of susceptible 

for       and various values of   and  . Fig. 2 display the approximate solutions of the 

class of infected asymptomatic, infected undetected and detected for       and various 

values of   and  . Fig. 3 display the approximate solutions of the class of asymptomatic 

infected for       and various values of   and  . Fig. 4 display the approximate solutions 

of the ailing symptomatic infected, undetected for       and various values of   and  . Fig. 

5 display the approximate solutions of the symptomatic infected and detected for       and 

various values of   and  . Fig. 6 display the approximate solutions of the class of acutely 

symptomatic infected detected for       and various values of   and  . Fig. 7 display the 

approximate solutions of the healed class for       and various values of   and  . Fig. 8 

display the approximate solutions of the death class for       and various values of   and 

 .  

 

 

7 Conclusion 

 

In this paper, a computational approach based on the upon Legendre wavelets optimization 

approximations is proposed for acquiring an approximate solution of distributed order time 

fractional Coronavirus-19 disease model where the time-fractional operator are given in the 

Caputo-Prabhakar sense. To acquire the numerical solution of distributed order time fractional 

Coronavirus-19 disease model, we made an exact formula for the Prabhakar fractional integral 

operator by using the Legendre wavelets optimization functions. Then by using this exact 

formula and the properties of Legendre wavelets optimization functions, we reduce the 

presented model into a system of algebraic equations, that these system of algebraic equations 

have been solved by using the Newton’s iterative method. In addition to, in this study, the 

Legendre wavelets optimization functions and their significant properties are presented. Error 

analysis of the approximation method is examined. The numerical example is plotted to show 

the practical efficiency and accuracy of the proposed numerical method. The high 

applicability of the given results in this paper show the practical applicability and high 

accuracy the considered method. Also, The solutions are approximated by applying the 

presented method with        ,         and different values of parameters as     and 

from the results of figures and tables, we see that the growth of convergence increases with 

increasing value  . In addition to, the results of figures and tables show that the proposed 

numerical algorithm is simple and effective allowing a more assertive analysis of the COVID-

19 model. 
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