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Abstract The solid transportation model is one of the most useful models in linear programming 

literature. Hence, this study focuses on a development of solid transportation programming with fuzzy 

cost coefficients and fuzzy-flexible supply and demand constraints and transportation capacity, which 

aims to minimize costs. Considering the available resources (capacity of supply centers), the capacity 

of the vehicle is generally considered as the minimum capacity, and the demand is generally considered 

as the maximum capacity. To adapt to real conditions, a flexible fuzzy hybrid model is studied for the 

solid transportation model with supply and demand constraints and flexible fuzzy vehicles. Generally, 

for such models, supply and demand restrictions and vehicles must first be converted into a real form, 

and then the associated problem is solved in a deterministic way by using the existing real problem 

techniques. Furthermore, a combined Goal programming and parametric approach is proposed to obtain 

the best satisfactory solution. Finally, an example is examined to analyze this approach. 

 

Keyword: Fuzzy Linear Programming, Goal Programming, Membership Function, Multi-parametric 

Fuzzy Flexible Transportation Problem, Solid Transportation Problem. 
 

1 Introduction 

 

Transportation problem represents one of the most extensively examined topics in the field of 

linear programming. As a critical component of national infrastructure, transportation systems 

are present in every country. Its activities have an impact on the nation's economic 

development, but they also experience several qualitative and quantitative shifts during the 

growth process. A solid transport issue is a specific instance of the traditional transportation 

problem where the vehicle capacity is considered to minimize the cost of transporting a given 

commodity from several sources (factories, manufacturing plants) to multiple destinations 

(warehouses, retail establishments). Additionally, the quantity of units transported from the 

origin to the destination affects the cost of the service. However, in the real world, transportation 

problem variables are determined by unpredictable variables, and because of the unregulated 
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aspects of the economic system, we encounter uncertainty and complexity. For researchers to 

address these challenges in non-deterministic settings, they must do so. The challenges of 

effective transportation in a hazy environment have also been the subject of extensive research. 

Since most real-world data is inaccurate and the need for a fuzzy model is increasing, numerous 

academics have studied solid transportation in a fuzzy environment. Zhang et al. [1] attempted 

to reduce transportation expenses by analyzing the solid transportation issue, in which 

resources, demands, and transportation capacity are viewed as fixed fees and inaccurate direct 

expenditures. Their proposed algorithm uses uncertainty theory and the tab search algorithm 

for model solution, as shown by a comparison of their technique to prior ones. Lastly, they 

determine the maximum feasible degree and points of rupture using the recommended 

algorithm. Dos [2] utilized Type 2 fuzzy parameters to explore issues relating to solid 

transportation with the goal of cutting costs and time. They employed two approaches to address 

transportation issues. The first model uses fuzzy type 2 for time and expense, while the second 

model uses it for cost, time, and every other variable. With the weighted method, global 

standards, and CV-based reduction approach, this method was addressed. With fuzzy goal 

programming, Rivaz et al. [3] presented a novel model for solving a multi-objective 

transportation problem. It is possible that altering the weights in the modified model will result 

in a variety of solutions. A comparison was then made with several existing methods. In an 

intuitionistic fuzzy environment, Chhibber et al. [4] investigated a fuzzy solid transportation 

problem. Using linear, hyperbolic, and exponential membership and non-membership 

functions, they discovered a Pareto-optimal solution to the multi-objective fixed-charge solid 

transportation problem. The transportation issue, in which supply, demand, and transportation 

costs are Fermatean Fuzzy Numbers (FFNs), was addressed by Sahoo [5]. He developed an 

algorithm for solving the transportation problem with Fermatean fuzzy parameters and used 

arithmetic operations of Fermatean fuzzy numbers to achieve the best solution. Samanta et al. 

[6] proposed a two-stage solution to the solid transportation problem: first, from the origin(s) 

to the nearest station(s); second, from the nearest station(s) to the major destination(s). 

Depending on the extent of transportation, a fuzzy discount policy was implemented in 

conjunction with a fuzzy fixed charge and fuzzy unit transportation costs. The model was solved 

using the Genetic Algorithm (GA). Khan et al. [7] proposed the multi-objective pentagonal 

fuzzy supply and demand after converting it to its precise form using the decomposition 

approach, and then they solved it nonlinearly using goal programming. Qiuping et al. [8] created 

a three-dimensional transit model using Triangular Neutrosophic Numbers (TNN) for supply, 

demand, transportation capacity, and cost. Then, degree of diversity was used to turn the three-

dimensional Neutrosophic transport problem into an interval programming problem, and two 

basic linear programming models were solved to determine the lower and upper bounds of the 

ideal solution. Nasseri et al. [9] used the goal programming technique to address a linear 

programming issue involving flexible fuzzy numbers. They used goal programming to 

determine the best Pareto solution for the simplified multiparametric, multi-objective, linear 

programming problem that they had created from the original problem through a series of cuts. 

They then applied this strategy to the many different kinds of flexible linear programming 

models, depending on their methodology. In continuation of their study, we analyze a Solid 

Transportation (ST) challenge using adjustable constraints and triangular fuzzy cost 

coefficients. 

We provide an overview of the studies conducted related to the topic of this study (see in 

Table1). 
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Table 1 A review of studies conducted in the last 10 years on solid transport problems under certainty 

conditions based on goal programming and multi-parameter models. 

 

Author(s) Year Description 

Yu et al. [10] 2015 
An interactive approach is developed to solve the multi-objective transportation 

problem with interval parameters. 

Colapinto et al. 

[11] 
2015 

This paper provides a state-of-the-art review on the use of goal programming in 

multi-criteria decision analysis across engineering, management, and social 

sciences. 

Dalman [12] 2016 
The paper presents an uncertain programming model for a multi-item solid 

transportation problem with uncertain parameters. 

Das et al.[13] 2017 
A profit-maximizing solid transportation model under a rough interval 

approach is proposed. 

Ahmad & Adhami 

[14] 
2018 

This paper proposes a neutrosophic programming approach to solve a multi-

objective nonlinear transportation problem with fuzzy parameters. 

Chong et al. [15] 2019 
The paper presents a goal programming optimization model to improve disaster 

management and distribution of humanitarian aid under uncertainty. 

Das.K et al. [16] 2020 

This paper proposes a mathematical model for a green solid transportation 

system with dwell time under carbon tax, cap, and offset policy, using type-2 

fuzzy logic to handle supply and demand uncertainties. 

Bakhtavar et al. 

[17] 
2020 

This paper presents a multi-objective goal programming model to assess 

renewable energy-based strategies for net-zero energy communities. 

Hussain & Kim 

[18] 
2020 

This paper develops a goal-programming-based multi-objective optimization 

model for off-grid microgrids to minimize energy storage degradation and 

load/renewable curtailment. 

Haque et al. [19] 2021 

A two-phase planning approach combining centralized and decentralized 

decision-making processes is proposed for modeling a multi-echelon, multi-

period, decentralized supply chain. 

Gupta et al. [20] 2021 
This paper presents a multi-objective programming model to optimize 

transportation and inventory costs in a supply chain network under uncertainty. 

Mamashli & 

Javadian [21] 
2021 

This paper proposes a multi-objective fuzzy robust programming model to 

design a sustainable municipal solid waste management network under 

uncertainty. 

Jana et al. [22] 2022 

This paper presents a bi-criteria optimization approach using fuzzy goal 

programming to minimize life cycle energy consumption and CO2 emissions in 

a biofuel supply chain under uncertainty. 

Bind et al. [23] 2023 

This paper proposes a solution approach for a sustainable multi-objective multi-

item 4D solid transportation problem involving triangular intuitionistic fuzzy 

parameters. 

Kaspar & 

Kaliyaperumal [24] 
2024 

This paper presents a bi-objective fixed-charge solid transportation problem 

that minimizes total transportation cost and time under uncertainty using 

neutrosophic sets. 

Vinotha [25] 2025 

This paper proposes improved mathematical models for a multi-objective cold 

fuzzy solid transportation problem with an extra power source to support 

freezing during vehicle engine shutdown. 
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For this purpose, we utilize a multi-parametric approach and goal programming according 

to the membership function designed to solve the Solid Transportation problem with Flexible 

Constraints. The best solutions of the goal programming and the suggested model are then 

contrasted. We also provide for both suggested scenarios, as well as an algorithm, fuzzy 

flexibility and a parametric approach, we attain the most degree of satisfaction. This paper has 

been divided into five parts. Section 2 provides some basic ideas as lemmas and theorems as 

our major instruments to prepare the research to incorporate the models and approaches. 

Proposed methods and an algorithm are presented in Section 3. We employ an illustrative 

example of the algorithm in Section 4. Finally, Section 5 is focused on the study's conclusion. 

 

 

2 Fuzzy Solid transport issue with flexible circumstances 

 

The solid transportation problem is one of the several forms of transportation models and is a 

generalization of conventional transportation. Basically, in the solid transportation model, it is 

assumed that each supplier has a supply capacity of ,is 1,2,...,i m= , customers have a demand 

of ,jd 1,2,...,j n= , and 𝑘 vehicles have a capacity of 
ke , 1 k K  , and 

ijkc the cost of 

shipping a goods unit from supplier 𝑖 to customer 𝑗 responds with the decision variable 
ijkx . 

Among realistic transportation models, which seek to reduce the transportation cost, are solid 

Transportation problems with fuzzy restrictions and fuzzy costs. Vehicle k th−  moves the item 

from m suppliers to n  clients. Goods from their source of supply to the capacity vehicle transfer 

items. Demand is now focused online since the COVID-19 pandemic has altered supply. As a 

result, the terms supply, demand, and transportation no longer have a rigid definition. A suitable 

framework for the mathematical model in this situation should be created that reflects the actual 

circumstances of the problem. The subsequent model considers all limitations to be fuzzy 

flexible data, and uses the symbols  for "lower than or equal to" and  for "upper than or 

equal to". The mathematical model is displayed below: 

Model I: 

1 1 1

m n K

ijk ijk

i j k

Min c x
= = =

                                                                                                                      (1) 

s.t. 
1 1

,
n K

ijk i

j k

x s i
= =

                                                                                                                                         (2) 

     
1 1

,
m K

ijk j

i k

x d j
= =

                                                                                                                                        (3) 

     
1 1

,
m n

ijk k

i j

x e k
= =

                                                                                                                                          (4) 

     0, 1,2,..., , 1,2,..., , 1,2,..., .ijkx i m j n k K = = =                                                                    (5) 

For Equation (3), the fuzzy membership function is: 
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1,

( ) 1 ,

0,

j

j

j j j j

j

j j

x d

d x
x d x d q

q

x d q



 


−
= −   +

  +

.           (6)            

For equations (2) and (4), Nasseri et al. [26] introduced the fuzzy constraint of membership 

function as: 

1,

( ) 1 , .

0,

i

i
i i i i

i

i i

x s

x s
x s x p s

p

x p s



 


−
= −   +

  +

                                                                                        (7) 

Given the absence of a precise description for conditions (2), (3), and (4), the equivalent 

model is built to solve this model using a parametric approach. 

Let that the tolerance of the i th− constraint of supply is 𝑝𝑖
 . main of tolerance

ip and its 

flexibility in its range, we possess 
1 1

, 1,2,...,
n K

ijk i

j k

x s i m
= =

= , and 
1 1

n K

ijk i i

j k

x s p
= =

 + , 

which  0,1 .  The tolerance of the j th− constraint of demand is 
jq . Based on tolerance 

jq

and its flexibility in its range, we give: 

 
1 1

m K

ijk j

i k

x d
= =

 and 
1 1

, 1,2,..., ,
m K

ijk j j

i k

x d q j n
= =

 − =   

and the tolerance of the k th− constraint of vehicle is 
kr . Main of tolerance 

kr  and its flexibility 

in its range, we have: 

1 1

m n

ijk k

i j

x e
= =

 , and
1 1

, 1,2,..., .
m n

ijk k k

i j

x e r k K
= =

 + =       

The following lemmas can be useful for our discussion. 

 

Lemma 1. The constraint 
1 1

m K

ijk j

i k

x d
= =

 is equivalent to the constraint 
1 1

,
m K

ijk j j

i k

x d q
= =

 −  

for  0,1 .    

Proof. Each feasible solution ijkx which is satisfied in 
1 1

m K

ijk j

i k

x d
= =

 is indeed a fuzzy set with 

the following membership function: 

 

1,

1 , ,

0,

j j

j j

j j j j j j

j

j j j

t d

d t
t d t d q

q

t d q



 


−
= −   +

  +

                            (8)          
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where 
1 1

m K

j ijk

i k

t x
= =

= , 1j ,...,n.=   

We called this feasible solution as  − feasible solution of this constraint. 

Now, we will consider the three following cases: 

A) If  
1 1

0
m K

ijk j

i k

x d
= =

−  , then the j th− Constraint is held and equal to 1. 

B) If 
1 1

0
m K

ijk j j

i k

x d q
= =

 −  then the membership function is monotonically increasing 

for j th− Constraint. The degree (level) of satisfaction j th−  constraint is decreasing. 

C) If
1 1

m K

ijk j j

i k

x d q
= =

−  , the tolerance accepted range is larger than the value which is 

determined by the decision-maker, Thus, the j th− Constraint has been completely 

violated, and its membership function is equal to 0. 

 

Hence, because the membership function is continuous, the right-hand sides of the flexible 

constraint form jd  to j jd q−  base on the continuous value for  , from 0 =  to 1 =  can be 

achieved. Therefore, the fuzzy flexible relation can be shown by the following equivalent 

parametric form, ( )j j jd d q = − where  0,1 .   

 

Lemma 2. Problem I is equivalent to the following multi-parametric linear programming 

problem: 

Model II: 

1 1 1

m n K

ijk ijk

i j k

Min c x
= = =

                                                                                                      (9)                      

 s.t. 
1 1

(1 ) , 1,2,..., ,
n K

ijk i i i

j k

x s p i m
= =

 + − =                                                          (10)   

      
1 1

(1 ) , 1,2,..., ,
m K

ijk j j j

i k

x d q j n
= =

 − − =                                                         (11) 

      
1 1

(1 ) , 1,2,..., ,
m n

ijk k k k

i j

x e r k K
= =

 + − =                                                        (12) 

      0, 1,2,..., , 1,2,..., , 1,2,..., , 0 , , 1.ijkx i m j n k K    = = =          (13) 

Proof. To establish the claim, it suffices to show that equations (2), (3), and (4) are respectively 

equivalent to (10), (11), and (12). Since the procedure is analogous in all three cases, we will 

focus solely on the second one and leave the remaining cases to the reader. The conclusion 

follows directly from Lemma 1. 

Thus, the main problem can now be reformulated in the following equivalent form: 
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Model III:  

1 1 1

m n K

ijk ijk

i j k

Min c x
= = =

                                                                                                                 (14)  

s.t. X X                                                                                                                                 (15) 

      0, 1,2,..., , 1,2,..., , 1,2,..., , 0 , , 1.ijkx i m j n k K    = = =                    (16)                                                                                                                        

 where the set of all feasible solutions of the problem is defined as follows. 

 

Definition 1. Suppose  1 1 1( ,..., , ,..., , ,..., ) 0,1
m n k

m n k      
+ +

=   and  

1 1 1 1 1 1

(1 ) , (1 ) , (1 )

0, 1,2,..., , 1, 2,..., , 1, 2,..., , 0 , , 1.

n K m K m n

ijk i i i ijk j j j ijk k k k

j k i k i jijk

ijk

x s p x d q x e r
X x

x i m j n k K



  

  

= = = = = =

 
 + −  − −  + − 

=  
  = = =  
 

  
 

So that ( ) ,ijkX x X=  ijkx   is an   − −  feasible solution for Modell III. 

 

                                                                                                                              

3 Transforming model from a flexible fuzzy model into an exact multi-parametric model    

 

Consider the problem with supply constraints in the flexible range of  ,i i is s p+ , demand 

constraints in the flexible range of ,j j jd q d −   and the constraint of vehicle’s capacity in the 

range of  ,k k ke e r+ . By utilizing the membership function for cost coefficients, we can 

transform the problem into a Multi-Parametric Solid Transportation (MPST) problem. We 

assume that the cost coefficients of the objective function are represented as triangular fuzzy 

numbers. Due to the fuzzy nature of these coefficients, solving the problem directly is not 

feasible. Therefore, we propose converting it into a crisp objective function using methods like 

Yager's approach, as referenced in [27]: 

 
Model IV: 

1 1 1

( )
m n K

ijk ijk

i j k

Min c x
= = =

                                                                                       (17)  

s.t. 
1 1

(1 ) , 1,2,..., ,
n K

ijk i i i

j k

x s p i m
= =

 + − =                                                       (18)   

     
1 1

(1 ) , 1,2,..., ,
m K

ijk j j j

i k

x d q j n
= =

 − − =                                                      (19) 

     
1 1

(1 ) , 1,2,..., ,
m n

ijk k k k

i j

x e r k K
= =

 + − =                                                      (20) 

     0, 1,2,..., , 1,2,..., , 1,2,..., , 0 , , 1.ijkx i m j n k K    = = =           (21)  
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where ( )ijkc corresponding crisp value of the cost coefficient is determined using a linear 

ranking function. By solving this problem, we obtain the optimal values for the decision 

variables as well as the optimal value of the objective function. 

 

 

3.1 Two-Step of Multi-Parametric Method 

 

In this section, we introduce a new method for solving the flexible fuzzy solid transportation 

problem by employing a multi-parametric approach. After solving Problem IV, we obtain the 

optimal solution as ( , , , )x        for the decision variables and the corresponding value of the 

objective function .z  To further maximize the degree of satisfaction, we proceed to solve the 

following problem. 

The multi-parametric linear programming problem is formulated as Model V: 

Model V:  

0 1 1

m n K

i j k

i j k

Max   
= = =

+ +                                                                                                (22)   

s.t. 
*

0 0

1 1 1

(1 )
m n K

ijk ijk

i j k

c x z p
= = =

 + −                                                                              (23) 

     
1 1

(1 ) , 1,2,..., ,
n K

ijk i i i

j k

x s p i m
= =

 + − =                                                              (24)  

     
1 1

(1 ) , 1,2,..., ,
m K

ijk j j j

i k

x d q j n
= =

 − − =                                                             (25) 

     
1 1

(1 ) , 1,2,..., ,
m n

ijk k k k

i j

x e r k K
= =

 + − =                                                             (26) 

     0, 1,2,..., , 1, 2,..., , 1, 2,..., , 0 , , 1,ijkx i m j n k K    = = =                (27)  

     
* * *1, 1, 1.i i j j k k                                                                             (28) 

Solving the second step yields the best solution x 
, with an objective function value as 

z 
, and also the degree of efficiency as ( , , )      the second phase produces the highest 

degree of satisfaction. The following algorithm is given to solve the major transportation 

problem. 

 

Algorithm (STPFFC Solver): 

 

Assumption: Consider the Solid Transportation Problem with Fuzzy Flexible Constraints 

(STPFFC), in which the model incorporates a set of parameters: , , , , ,i j k i j ks d e p q r . 

 

Step 1: A linear ranking function is employed to defuzzify the cost coefficients, thereby 

obtaining their corresponding crisp values, as demonstrated below: 
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1 1 1

m n k

ijk ijk

i j k

Min c x
= = =

  which is equivalent to ( )( ) ( )
1 1 1

,
m n k

ijk ijk

i j k

Min z c x Min c x
= = =

=  . 

Step 2: The problem is reformulated into a multi-parametric framework. By solving Model IV, 

one obtains the optimal values of the satisfaction parameters as , ,i j k     , the 

corresponding optimal value of the objective function ,z  and x 
 the associated 

optimal feasible solution. 

Step 3: Model V is solved using the corresponding results from Model IV, incorporating the 

values of the satisfaction parameters denoted by , ,i j k      as determined by an expert 

decision maker in the first phase, based on their maximum degree of satisfaction. This 

process yields the optimal solution x 
 and the corresponding optimal value of the 

objective function. 

In the following section, a numerical example is presented to illustrate the proposed 

approach. All models are solved using LINGO optimization software. 

 

 

4 Numerical examples 

 

Consider the parameters of the Solid Transportation (ST) problem as follows: 

i  : Index of supplies (suppliers; 1 2 3i , ,= ). 

j : Index of demands (customers; 1 2 3j , ,= ).  

k  : Capacity of vehicles ( 1 2 3k , ,= ). 

ijkc
 : Unit transportation cost of shipping of product from source i  to customer j  by using 

vehicle k  ( 1 2 3i , ,= , 1 2 3j , ,= , 1 2 3K , ,= ). 

ijkx
: Decision variable representing the number of units transported from source i  to customer

j  by using vehicle k  ( 1 2 3i , ,= , 1 2 3j , ,= , 1 2 3K , ,= ). 

z  : Total transportation cost, i.e., the objective function to be minimized. 

 
Table 2 Demand and transportation data 

 
 

3 3 3 3 3 3

1 2 3

1 1 1 1 1 1

7, 8, 6i k i k i k

i k i k i k

x x x
= = = = = =

     . 

Based on the available fuzzy data, we have the valuable issue of the transportation model with 

fuzzy costs and flexible constraints. This issue will be solved through the algorithm: 

 K=3 K=2 K=1  

 3                 2                  1 3                    2                      1 3                    2                   1 𝑖 ∖ 𝑗 

8 (5,7,9)       (5,7,9)       (7,9,11) (6,7,8)           (8,9,10)       (10,12,14)  (2,3,4)         (3,6,9)         (8,9,10)    1 

9 (5,6,7)        (1,3,5)       (3,5,7) (6,8,10)        (8,11,14)       (5,6,7) (5,6,7)         (7,9,11)        (4,5,6) 2 

5 (1,3,5)        (6,7,8)       (1,1,1) (8,9,10)         (6,7,8)           (1,2,3) (1,1,1)         (1,2,3)           (1,2,3) 3 

 6                         5 10  
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Min  

111 121 131 112 122 123 113 123 133 211 221 231 2129 8 3.5 12 9 7 9 7 7 5 9 6 6Z x x x x x x x x x x x x x= + + + + + + + + + + + + +  

222 223 213 223 233 311 321 331 312 322 323 313 323 333

111 121 131 112 122 132 113 123 133

211 221 231 212 222 232 213 223 233

311 321 331 312

11 8 5 3 6 2 2 2 7 9 7 3

. . 8

9

x x x x x x x x x x x x x x

s t x x x x x x x x x

x x x x x x x x x

x x x x x

+ + + + + + + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + 322 332 313 323 333

111 211 311 121 221 321 131 231 331

112 212 312 122 222 322 132 232 332

113 213 313 123 223 323 133 233 333

111 211 311 121 221 321 13

5

7

8

6

x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x

+ + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + 1 231 331

112 212 312 122 222 322 132 232 332

113 213 313 123 223 323 133 233 333

10

5

6

0, 1,2,3, 1,2,3, 1,2,3, 0 1, 0 1, 0 1.ijk i j k

x x

x x x x x x x x x

x x x x x x x x x

x i j k   

+ +

+ + + + + + + +

+ + + + + + + +

 = = =      

 

Step 1: In the process of solving of the above problem, we use the Yager’s ranking function to 

obtain the associate crisp values of fuzzy numbers. Also, we use the suggested process in 

section 3 to make the following multi-parametric linear programing. 

Min

111 121 131 112 122 123 113 123 133 211 221 231 2129 8 3.5 12 9 7 9 7 7 5 9 6 6z x x x x x x x x x x x x x= + + + + + + + + + + + + +  

222 223 213 223 233 311 321 331 312 322 323 313 323 333

111 121 131 112 122 132 113 123 133 1

211 221 231 212 222 232 213 223 233 2

311

11 8 5 3 6 2 2 2 7 9 7 3

. .

8 3(1 )

9 4(1 )

x x x x x x x x x x x x x x

s t

x x x x x x x x x

x x x x x x x x x

x





+ + + + + + + + + + + + +

+ + + + + + + +  + −

+ + + + + + + +  + −

+ 321 331 312 322 332 313 323 333 3

111 211 311 121 221 321 131 231 331 1

112 212 312 122 222 322 132 232 332 2

113 213 313 123 223 323 133 233

5 2(1 )

7 3(1 )

8 3(1 )

x x x x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x







+ + + + + + +  + −

+ + + + + + + +  − −

+ + + + + + + +  − −

+ + + + + + + + 333 3

111 211 311 121 221 321 131 231 331 1

112 212 312 122 222 322 132 232 332 2

113 213 313 123 223 323 133 233 333 3

6 2(1 )

10 4(1 )

5 2(1 )

6 2(1 )

0, 1,2,3, 1,ijk

x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

x i j









 − −

+ + + + + + + +  + −

+ + + + + + + +  + −

+ + + + + + + +  + −

 = = * * *2,3, 1,2,3, 1, 1, 1.i i j j k kk      =      

 

Step 2: Use Lingo software to solve the above problem based on the various values of , , .  

The following table has the results.  
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Note that for 
* * * * * * * *

1 2 3 1 2 3 1 20.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,       = = = = = = = = *

3 0.5. =  

We have the objective function 
*

1 45.75z = .  

Step 3: The goal multiparametric linear programming problem is presented as follows:  

Min 1 1 2 2D d d d d− + − += − + −  

111 121 131 112 122 123 113 123 133 211 221 231 212 222 223

213 223 233 311 321 331 312 322 323 313 323 333 1 1

1 2 3 1 2 3

. .

9 8 3.5 12 9 7 9 7 7 5 9 6 6 11 8

5 3 6 2 2 2 7 9 7 3 42.75

s t

x x x x x x x x x x x x x x x

x x x x x x x x x x x x d d

      

− +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + − =

+ + + + + + 1 2 3 2 2

111 121 131 112 122 132 113 123 133 1

211 221 231 212 222 232 213 223 233 2

311 321 331 312 322 332 313 323 333 3

111 211 311 121

9

8 3(1 )

9 4(1 )

5 2(1 )

d d

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x

 







− ++ + + − =

+ + + + + + + +  + −

+ + + + + + + +  + −

+ + + + + + + +  + −

+ + + 221 321 131 231 331 1

112 212 312 122 222 322 132 232 332 2

113 213 313 123 223 323 133 233 333 3

111 211 311 121 221 321 131 231 331 1

7 3(1 )

8 3(1 )

6 2(1 )

10 4(1

x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x









+ + + + +  − −

+ + + + + + + +  − −

+ + + + + + + +  − −

+ + + + + + + +  + −

112 212 312 122 222 322 132 232 332 2

113 213 313 123 223 323 133 233 333 3

* * *

)

5 2(1 )

6 2(1 )

0, 1,2,3, 1,2,3, 1,2,3, 1, 1, 1ijk i i j j k k

x x x x x x x x x

x x x x x x x x x

x i j k





     

+ + + + + + + +  + −

+ + + + + + + +  + −

 = = =      

 

The optimal values are those derived from solution of the model: 

1 1 20, 182.75, 3,d d d− + −= = = and 2 0d + =  as deviations.  

The optimal solution of the objective function is equal to: 
** 228.5 182.75 45.75z = − = , 

with 1 2 3 1 2 3 1 2 30.5, 0.5, 1, 1, 1, 0.5, 0.5, 0.5, 0.5        = = = = = = = = = . 

According to the results in Table 4.2, raising each parameter from zero to one leads to an 

increase in the objective function's value, as the function itself decreases. This confirms the 

accuracy of the tested outputs. These findings underscore the robustness and adaptability of the 

proposed model in addressing transportation problems characterized by data uncertainty and 

constraint flexibility. Furthermore, the model’s capacity to explicitly capture the sensitivity of 

the optimal solution to parameter variations enhances its practical relevance, particularly for 

real-world decision-making scenarios in which ambiguity and tolerance in constraints are 

inevitable.  

Table 3 The optimal values of the objective function based on different values of , ,   . 

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 α, β, γ 

73 64.1 59.2 54.3 49.8 45.75 41.7 37.65 33.6 29.55 25.5 Z 
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5 Conclusion and Future works 
 

In this study, an advanced extension of the solid transportation model presented by 

incorporating fuzzy cost parameters and flexible fuzzy constraints related to supply, demand, 

and vehicle capacity. The approach addresses the uncertainties often encountered in real 

transportation systems by modeling supply as a flexible lower bound, demand as a flexible 

upper bound, and transportation capacity as a variable constraint. To transform the fuzzy 

environment into a solvable form, membership functions were applied, and the model was 

converted into a deterministic equivalent. A combined method based on goal programming and 

a multi-parametric strategy was then employed to derive the most satisfactory solution, 

considering the trade-offs between conflicting goals. The proposed methodology, which 

integrates goal programming with multi-parametric models, addresses the solid transportation 

problem under certainty conditions while incorporating fuzzy flexible constraints. The results, 

as reported in the corresponding tables, reveal that the application of fuzzy flexible constraints 

ensures that an increase in the degree of desirability does not adversely affect the objective 

function value. This finding affirms the appropriateness of the proposed method. Furthermore, 

the outcomes indicate that the developed hybrid model distinguishes itself from existing 

approaches to the solid transportation problem by incorporating conditions and assumptions 

that more accurately reflect real-world circumstances, while demonstrating superior 

performance relative to several established models. Finally, the effectiveness of the proposed 

model was validated through a numerical example, confirming its suitability for complex and 

uncertain decision-making scenarios in transportation logistics. In future research, interval 

constraints can also be used. Moreover, the objective function in Model IV can be replaced by 

an equivalent multi-objective problem, and then, in the next process, by using a well-known 

approach for solving the multi-objective problems, a weighted method can be used.  Also, 

extending the model to multi-stage systems and considering stochastic demand scenarios are 

among the issues that future research could explore. 

 

Acknowledgment: The authors sincerely thank the reviewers for their constructive guidance, 

which improved the quality of the article. 
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