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Abstract  This paper proposes a new mathematical model for multi-objective redundancy allocation problem (RAP) without component mixing in each subsystem when the redundancy strategy can be chosen for individual subsystems. Majority of the mathematical model for the multi-objective redundancy allocation problems (MORAP) assume that the redundancy strategy for each subsystem is predetermined and fixed. In general, active redundancy has received more attention in the past. However, in practice both active and cold-standby redundancies may be used within a particular system design and the choice of the redundancy strategy becomes an additional decision variable. The proposed model for MORAP simultaneously maximizes the reliability and the net profit of the system. And finally, to clarify the proposed mathematical model a numerical example will be solved.
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1 Introduction

The primary goal of reliability engineering is to improve the reliability of system. In the initial design activity, the redundancy allocation is a direct way of enhancing system reliability. The redundancy allocation problem involves the simultaneous selection of components and a system-level design configuration, which can collectively meet all design constraints in order to optimize some objective functions such as system cost and/or reliability. RAP can be categorized into RAP without component mixing [1, 2] and RAP with mix of components [3- 9]. Some researchers studied the RAP when the redundancy strategy can be chosen for individual subsystems [10-12]. 
MORAP is studied by many researchers. Basacca et al. [13] used a multi-objective genetic algorithm which allows the decision maker to identify set of pareto optimal solutions. They present a new model for maximizing the net profit and system reliability. Coit et al. [14] studied a MORAP to maximize system reliability and minimize the estimation of reliability. Coit et al. [15] used a multi-objective genetic algorithm to find pareto optimal solutions with three different goals (maximum system reliability and minimum cost and weight). Finally, the Pareto optimal solutions are prioritized based on the decision maker's objective function preferences. Coit et al. [16] considered a MORAP to maximize the reliability of each individual subsystem. Konak et al. [17] considered a problem to determine the  optimal design configuration to maximize system reliability and minimize system cost, considering weight constraint and constraint for the number of dedicated components to each subsystem. They used a multinomial Tabu Search to solve this problem. Konak et al. [18] considered a multi-objective RAP to maximize the reliability and minimize the cost. They used Tabu Search approach to initially find the entire Pareto set and then pruned the set of Pareto solutions by a Monte-Carlo simulation based on the decision marker's predefined objective function preferences. Taboada et al. [19] solved the same problem by using a new multiple objective evolutionary algorithm (MOEA) which mainly differs from other MOEAs. Taboada et al. [20] studied MORAP to maximize the overall system reliability and minimize the system cost and weight. It was initially solved by using the Non-dominate Sorting Genetic Algorithm (NSGA). They proposed two pruning methods to reduce the size of the Pareto optimal set. Ling et al. [21] developed a multi-objective variable neighborhood search (MOVNS) algorithm for solving MORAP. They verified the performance of the proposed algorithm by testing it on three sets of complex instances with different subsystems. Lins et al. [22] studied a MORAP subject to imperfect repairs and system availability. They used a multi-objective genetic algorithm to solve this problem and compared result with multi-objective Ant colony algorithm. In all these introduced multi-objective papers, the active strategy is predetermined for subsystems. 
Based on the single objective model which is presented by Coit [10], in this paper a new MORAP will be proposed. The main difference of this study with other MORAP is considering each subsystems strategy as a decision variable. 
The structure of this paper is organized as follows; Sections 2 and 3 present the problem definition and the problem modeling, respectively. In Section 4 a numerical example is solved. Finally, conclusion and future research is presented.
2 Problem definition

The problem that is studied in this paper is the result of adding a new objective function to the RAP without component mixing that is presented by Coit [10]. This new objective function calculates the pure profit that is gained during a limit period, considering different costs like purchasing, penalties during downtime and damage cost of the components. The objective is to determine the strategy and choose the element and redundancy-level for each subsystem to maximize system reliability and profit of system subject to cost and weight constraints.

3 Problem modeling

To formulate the problem, the parameters first are defined in section 3.1. The new objective function is then derived in section 3.2. Finally, the mathematical model is developed in section 3.3.

3.1 Parameters
The parameters of the model are defined as follows.

A

set of all subsystems with active redundancy,

S          
set of all subsystems with cold-standby redundancy,

N         

set of all subsystems with no redundancy.
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purchasing cost and weight for the jth available component for the subsystem i
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failure switching reliability at time t
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the amount of money per unit time paid by the customer for the plan service
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total profit from plant operation
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penalty cost during downtime, due to missed delivery of agreed service
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total damaged cost during period T
3.2 Objective functions
The profit function contains the plant profit, purchasing and installation cost, penalties during downtime and the damage cost.
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Equation 1 is the plant profit in which 
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 represents the amount of money per until time paid by the customer for the plant service, and R(t) is the instantaneous plant reliability.
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Equation 2 is the purchasing and installation cost of the s nodes in which the ith of them constituted of [image: image28.wmf]i
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Equation 3 is the amount of money to be paid to the customer because of missed delivery of the agreed service when the plant is unavailable.
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Equation 4 is the total damage cost during period T. The component time – to-failure is distributed according to Erlang distribution, so 
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th subsystem. As all the dedicated components may fail before finishing period T, the number of damaged components for subsystem [image: image38.wmf]i
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Equation (4) can be changed as equation(5):
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In which 
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(6)
The net profit objective function can be then written as follows:
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According to equations (5):


[image: image46.wmf]i

     

          

          

.

U

i

      

          

.

.

.

U

:

St

  

)

))

(

1

(

)

(

(

-

)

(

G

i

i

1

1

"

£

"

£

+

-

+

+

=

å

ò

å

ò

=

=

s

i

s

iz

iz

S

i

i

T

NS

iz

iz

s

i

i

T

t

c

n

c

T

k

U

t

R

C

B

C

n

t

R

P

i

i

i

i

l

o

o


3.3 The mathematical model
The proposed mathematical model is described as follow:
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(1): Maximize the reliability of the system in which the first, second and third term of the equation denotes the reliability for the subsystem with cold redundancy strategy, active strategy and no redundant Coit [10].

(2): Maximize the net profit value.
(3): Purchasing cost constraint.

(4): Weight constraints.
(5),(6): 
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This model belongs to Np-hard class and solving it by exact methods is not possible, a small example considering two subsystems will be solved whit exact method in the next section.  All possible amounts for the variables are considered and the problem will be solved for all the possible combination of these variable amounts. Finally, the set of pareto optimal solution will be calculated among these possible solutions and a unique solution will select among the set of solution using normalize method.
4 Numerical example
In this example, a series-parallel system whit two parallel subsystems is considered. In each subsystem three or four components type can be assigned. Component cost, weight and Erlang[image: image58.wmf]ij

k
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 distribution parameters () are shown in table 1. The objectives are maximization system reliability and profit at 100 hours, subject to purchase cost constraint (C=230max) and the system weight constraint (W=270max). Active or cold-standby redundancy can be used for each subsystem. Reliability to switch to non-failed components is 0.99 for all subsystems whit cold-standby redundancy. Maximum number of components which can be assigned in each subsystem are 2. 
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,[image: image66.png] and installation costs are shown in Table 2. The small example is solved for different possible solutions. Table 3 shows the 81 possible solutions. A normalize method is used to select a unique solution from the set of Pareto optimal solutions. Considering
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are the amounts of the first and second objective for the ith optimal solution, respectively. The best solution has the lowest normalized amount. In the proposed example, 41 in table 3, contains the biggest amounts for both reliability and net profit value in contrast with other possible solutions.
Table 1 Input of the small example
	i
	Choice(j)

	
	1
	
	2
	
	3

	
	λij
	kij
	cij
	wij
	
	λij
	kij
	cij
	wij
	
	λij
	kij
	cij
	wij

	1
	0.00532
	2
	1
	3
	
	0.000726
	1
	1
	4
	
	0.00499
	2
	2
	2

	2
	0.00818
	3
	2
	8
	
	0.000619
	1
	1
	10
	
	0.00431
	2
	1
	9


	
	
	Choice(j)

	Subsystem
	
	1
	2
	3
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	1
	
	82
	21
	17

	2
	
	15
	93
	13


Table 2  Installation costs for each subsystem
Table 3  Possible solutions and the objective amounts of them for the proposed small example

	solution
	Subsys1
	
	Subsys2
	
	Reliability
	Net Profit
	solution
	Subsys1
	
	Subsys2
	
	Reliability
	Net Profit

	
	ARS
	z1
	n1
	
	ARS
	z2
	n2
	
	
	
	
	ARS
	z1
	n1
	
	ARS
	z2
	n2
	
	
	

	1
	N
	1
	1
	
	N
	1
	1
	
	0.3363496
	672332.8
	42
	A
	2
	2
	
	N
	3
	1
	
	0.3363496
	672460.8

	2
	N
	2
	1
	
	N
	2
	1
	
	0.3363496
	672083.8
	43
	A
	3
	2
	
	N
	3
	1
	
	0.99995
	1999828

	3
	N
	3
	1
	
	N
	3
	1
	
	0.999998
	1999202
	44
	S
	1
	2
	
	N
	3
	1
	
	0.3363496
	672460.8

	4
	N
	1
	1
	
	N
	2
	1
	
	0.3363496
	672083.8
	45
	S
	2
	2
	
	N
	3
	1
	
	0.3363496
	672460.8

	5
	N
	1
	1
	
	N
	3
	1
	
	0.3363496
	671834.8
	46
	S
	3
	2
	
	N
	3
	1
	
	0.99994
	1999828

	6
	N
	1
	1
	
	A
	2
	2
	
	0.9399769
	1879218
	47
	A
	1
	2
	
	A
	1
	2
	
	0.9399769
	1879710

	7
	N
	2
	1
	
	N
	1
	1
	
	0.3363496
	672332.8
	48
	A
	1
	2
	
	A
	2
	2
	
	0.9399769
	1879685

	8
	N
	2
	1
	
	N
	3
	1
	
	0.3363496
	671834.8
	49
	A
	1
	2
	
	A
	3
	2
	
	0.9399769
	1879660

	9
	N
	1
	1
	
	A
	3
	2
	
	0.9399769
	1879047
	50
	A
	1
	2
	
	S
	1
	2
	
	0.6043351
	1208534

	10
	N
	3
	1
	
	N
	1
	1
	
	0.99997
	1999700
	51
	A
	1
	2
	
	S
	2
	2
	
	0.6043351
	1208491

	11
	N
	3
	1
	
	N
	2
	1
	
	0.999995
	1999451
	52
	A
	1
	2
	
	S
	3
	2
	
	0.6043351
	1208449

	12
	N
	1
	1
	
	S
	1
	2
	
	0.6043351
	1208313
	53
	A
	2
	2
	
	A
	1
	2
	
	0.9963972
	1992556

	13
	N
	1
	1
	
	A
	1
	2
	
	0.9399769
	1879389
	54
	A
	2
	2
	
	A
	2
	2
	
	0.9963972
	1992531

	14
	N
	1
	1
	
	S
	3
	2
	
	0.6043351
	1207838
	55
	A
	2
	2
	
	A
	3
	2
	
	0.9963972
	1992506

	15
	N
	1
	1
	
	S
	2
	2
	
	0.6043351
	1208075
	56
	A
	2
	2
	
	S
	1
	2
	
	0.8730956
	1746082

	16
	N
	2
	1
	
	A
	1
	2
	
	0.9963972
	1992235
	57
	A
	2
	2
	
	S
	2
	2
	
	0.8730956
	1746039

	17
	N
	2
	1
	
	A
	2
	2
	
	0.9963972
	1992064
	58
	A
	2
	2
	
	S
	3
	2
	
	0.8730956
	1745997

	18
	N
	1
	1
	
	S
	3
	2
	
	0.6043351
	1207838
	59
	A
	3
	2
	
	A
	1
	2
	
	0.9975796
	1994921

	19
	N
	2
	1
	
	A
	3
	2
	
	0.9963972
	1991893
	60
	A
	3
	2
	
	A
	2
	2
	
	0.9975796
	1994896

	20
	N
	2
	1
	
	S
	1
	2
	
	0.8730956
	1745861
	61
	A
	3
	2
	
	A
	3
	2
	
	0.9975796
	1994871

	21
	N
	2
	1
	
	S
	3
	2
	
	0.8730956
	1745386
	62
	A
	3
	2
	
	S
	1
	2
	
	0.98801
	1975922

	22
	N
	3
	1
	
	A
	1
	2
	
	0.9975796
	1994600
	63
	A
	3
	2
	
	S
	2
	2
	
	0.98801
	1975880

	23
	N
	3
	1
	
	A
	2
	2
	
	0.9975796
	1994429
	64
	A
	3
	2
	
	S
	3
	2
	
	0.98801
	1975837

	24
	N
	3
	1
	
	A
	3
	3
	
	0.9969435
	1992792
	65
	A
	1
	2
	
	A
	3
	2
	
	0.9399769
	1879660

	25
	N
	3
	1
	
	S
	1
	2
	
	0.98801
	1975701
	66
	A
	2
	2
	
	A
	3
	2
	
	0.9963972
	1992506

	26
	N
	3
	1
	
	S
	2
	2
	
	0.98801
	1975464
	67
	S
	1
	2
	
	A
	3
	2
	
	0.9399769
	1879660

	27
	N
	3
	1
	
	S
	3
	2
	
	0.98801
	1975226
	68
	S
	2
	2
	
	A
	3
	2
	
	0.9963972
	1992506

	28
	A
	1
	2
	
	N
	1
	1
	
	0.3363496
	672551.9
	69
	S
	3
	2
	
	A
	3
	2
	
	0.9975796
	1994871

	29
	A
	2
	2
	
	N
	1
	1
	
	0.3363496
	672551.9
	70
	S
	2
	2
	
	A
	1
	2
	
	0.9963972
	1992556

	30
	S
	1
	2
	
	S
	3
	2
	
	0.6043351
	1208449
	71
	S
	2
	2
	
	A
	2
	2
	
	0.9963972
	1992531

	31
	S
	1
	2
	
	N
	1
	1
	
	0.3363496
	672551.9
	72
	S
	2
	2
	
	A
	3
	2
	
	0.9963972
	1992506

	32
	S
	2
	2
	
	N
	1
	1
	
	0.3363496
	672551.9
	73
	S
	2
	2
	
	S
	1
	2
	
	0.8730956
	1746082

	33
	S
	3
	2
	
	N
	1
	1
	
	0.99997
	1999919
	74
	S
	2
	2
	
	S
	2
	2
	
	0.8730956
	1746039

	34
	A
	1
	2
	
	N
	2
	1
	
	0.3363496
	672506.4
	75
	S
	2
	2
	
	S
	3
	2
	
	0.8730956
	1745997

	35
	A
	2
	2
	
	N
	2
	1
	
	0.3363496
	672506.4
	76
	S
	3
	2
	
	A
	1
	2
	
	0.9975796
	1994921

	36
	A
	3
	2
	
	N
	2
	1
	
	0.99996
	1999874
	77
	S
	3
	2
	
	A
	2
	2
	
	0.9975796
	1994896

	37
	S
	1
	2
	
	N
	2
	1
	
	0.3363496
	672506.4
	78
	S
	3
	2
	
	S
	2
	2
	
	0.98801
	1975880

	38
	S
	2
	2
	
	N
	2
	1
	
	0.3363496
	672506.4
	79
	S
	3
	2
	
	S
	3
	2
	
	0.98801
	1975837

	39
	S
	3
	2
	
	N
	2
	1
	
	0.999998
	1999874
	80
	S
	1
	2
	
	A
	1
	2
	
	0.9399769
	1879710

	40
	A
	1
	2
	
	N
	3
	1
	
	0.3363496
	672460.8
	81
	S
	1
	2
	
	A
	2
	2
	
	0.9399769
	1879685

	41
	A
	3
	2
	
	N
	1
	1
	
	0.999999
	1999919
	
	
	
	
	
	
	
	
	
	
	


5 Conclusion and future research
In this paper, a new MORAP with choice of redundancy strategies has been studied. We solved a small example considering all the possible solutions. After gaining the set of Pareto optimal solutions, we normalized them to filter the set and reach a unique solution. Solving the model for large examples with exact methods is not possible. Therefore, heuristic algorithms like NSGAII is a good method to solve the problem. 
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