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Abstract  In data envelopment analysis, anyone can do classification decision units with efficiency scores. It will be interesting if a method for classification of DMUs without regarding to efficiency score is obtained. So in this paper, the classification of Decision Making Units (DMUs) is done according to the additive model without being solved for obtaining scores efficiency. This is because it is known that the additive model is the simplest non-radial model in DEA. In fact, the classification of DMUs to a set of efficient, weak efficient, and inefficient units, based upon feasibility concept is done here. Especially, the models and theorems for this aim are presented. 
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1 Introduction

Data envelopment analysis (DEA), as originally proposed by Charnes, Cooper and Rhodes [1] is a nonparametric frontier estimation methodology for evaluating the relative efficiencies. This methodology is nonparametric in a sense, because it does not require an assumption about a functional form of the efficient frontier; and therefore, there is no parameter estimation. DEA clusters the DMUs as “efficient” or “inefficient” depending on their relative geometric location with respect to an efficient frontier. The unit on the frontier is called efficient; otherwise, it is called inefficient. 
One major problem with a radial measure of technical efficiency is that it doesn't reflect all identifiable potential for increasing outputs and reducing inputs. In economy, the concept of efficiency is intimately related to the idea of Pareto optimality. A DMU is Pareto optimal only when it is not possible to improve any input or output without worsening some other input or output. In other words, when positive output and input slacks are presented at the optimal solution of CCR or BCC [2], radial DEA models, the corresponding radial projection of an observed input-output combination does not meet the criterion of Pareto optimality [3] and it should not be qualified as an efficient point. The Pareto efficient units are divided into two groups: extreme efficient and non-extreme efficient. However, in this paper we consider one of several non-radial models of DEA, that is, the additive model, [4], as it does yield a projection to the efficient subset of efficiency frontier. The suggested approach is based on replacing the concept of feasibility instead of solving the DEA models. 
The study is arranged as follows: In section 2 several DEA basic models are given. In section 3 we introduce the additive model based on DEA. In section 4, we are determined to distinguish between the resulting classification of DMUs as efficient, weak efficient and inefficient based upon feasibility. Section 5 illustrates an example and section 6 deals with the conclusion. 
2 The DEA basic models
This section presents some basic definitions and concepts readable and useful for other sections. They won't be discussed in details. Suppose that the producer uses the input vector 
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; i.e., all data are assumed to be nonnegative, but at least one component of every input and output vector is positive. A pair of such semi-positive input 
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 and output 
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, are called the decision making units. The Production Possibility Set (PPS) is represented as 
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The production possibility set 
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 is generally close and convex. Additional properties set 
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 are given as follows:

1. The observed DMU belongs to 
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Arranging the data set in matrices
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Where 
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is a semi-positive vector. Adding the constraint
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 are called the production possibility sets of CCR model [1] and BCC model [2] in DEA to gather with constant return to scale and variable return to scale respectively. To evaluate the efficiency of 
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, the input-oriented model (1) and the output-oriented model (2) are applied. 
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and 
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The above mentioned models are called envelopment form 
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 model if 
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3 DEA additive model 
Consider the additive model with input-output crisp data. This model was introduced by [3]:
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or equivalently we have:
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(4) 

In the literature of data envelopment analysis different models are proposed to determine efficient units, weak efficient units and inefficient units. Here, we like to take a deeper look at the additive model in order to classify the DMUs with it. The classical DEA models rely on the assumption that inputs have to be minimized and outputs have to be maximized. Following the efficient subset (ET), weak efficient (WET) and inefficient (INET) of the production possibility set 
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To explain the underpinnings of the above definitions, we can use the Fig. 1, which represents the efficient and inefficient Sets, in Farrell model with two inputs and one output.
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Fig. 1 PPS in Farrell model
In Fig. 1, the symbol 
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is inefficient unit. Therefore, it is obvious that according to the above definitions, the below properties can be resulted. 
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The symbol 
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 is applied for empty set. The above properties express the union and intersection of set efficient, weak efficient and inefficient. The union of them is production possibility set and their intersection is the empty set. In the following sections, we are willing to separate DMUs into three groups,
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[image: image53.wmf]o

DMU

 be a unit under evaluation by model (4), then it is an efficient unit when 
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4 Classification of DMUs in the additive model 
In the earlier part of this paper, we mentioned how to classify DMUs with respect to efficiency score in DEA additive model. It will be interesting if we attain a method for classifying DMUs without regarding to efficiency score. Our focus is based on feasibility additive model. This work is done by revising the additive model. To start, we modify the model (4) as model (5), with replacing
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 is a non-Archimedean infinitesimal positive number which is smaller than any positive real number.
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Now by replacing 
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 in model (5), and by removing the constant value
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of objective function, we obtain the model (6) as follows:
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Using the model (5) or (6), we determine the set of efficient DMUs and also inefficient DMUs. This subject will relate to Theorem 1. 
Theorem 1. Suppose that the model (6) has feasible solution then 
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be a feasible solution model (6). 
Then we obtain: 
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Corollary 1. Suppose that the model (6) is not feasible then  
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As demonstrated in Theorem 1, we can only distinguish between efficient and inefficient DMUs, with respect to the feasibility of model (6). Now, we show a model and two theorems for the separation of efficient units of weak efficient units. Considering the following model (7):
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Theorem 2. Suppose 
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if and only if the model (7) is infeasible.
Proof.  Suppose 
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Theorem 3. Suppose 
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Proof. With contradiction, suppose that the model (7) is not feasible. Then according to Theorem 2, 
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, and also according to Theorem 2, the model (7) is infeasible. It is also a contract. The proof is complete.
In order to recognize that 
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, we apply the model (7) with respect to feasibility concept. So far, the DMUs have been divided in two groups, efficient and weak efficient. Now, for classification of efficient DMUs, at first we present the reference set definition.
Definition 1. For 
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All the references of a 
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 is dominated by one of them or their some combination. Therefore, we have several results as follows:
1. 
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is inefficient; then it is not a member of reference set 
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2. 
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is extreme efficient, then it is only reference for itself [1]. 
3. 
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is non-extreme efficient, then there exists at least one member of reference set 
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Hence, by utilizing the foregoing definition and results, we present the following model for recognization and classification of extreme efficient and non-extreme efficient based on the additive model. 
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Theorem 4. Suppose 
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This means that 
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Theorem 5. Suppose 
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Proof. By contradiction, suppose that 
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and the model (8) has feasible solution. Then by Theorem 4, we obtain 
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[image: image138.wmf]E

o

DMUT

Î

and 
[image: image139.wmf]o

DMU

 isn’t an extreme efficient, it will be non-extreme efficient. Therefore, according to Theorem 4, the model (8) has a feasible solution, also it is a contract. Thus the proof is complete. 

So in this paper, we have used some theorems which helps us to recognize and classify DMUs based on feasibility concept.
5 An example 
Consider 10 samples of DMUs with two inputs and two outputs which are shown at Table 1.
Table 1. The set of units with two inputs and two outputs
	DMU
	Input 1
	Input 2
	Output 1
	Output 2

	1

2

3

4

5

6

7

8

9

10
	81

85

56.7

91

216

58

112.2

293.2

186.6

143.4
	87.6

12.8

55.2

78.8

72

25.6

8.8

52
0.1

105.2
	5191

3629

3302

3379

5368

1674

2350

6315

2865

7689
	205

0

0

8

639

0

0

414

0

66


Applying the model (6) to 
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, we find that DMUs 1, 2, 5, 8 and 9 are efficient, but the other DMUs are inefficient. In other words, the model (6) is infeasible when we evaluate DMUs 1, 2 , 5, 8 and 9, on the other hand the model (6) be feasible for DMUs 3, 4, 6, 7, and 10 with optimal objective value 311.27, 2164.44, 1229.05, 948.76 and 509.28, respectively. Therefore, we have:

Efficient
[image: image142.wmf]12589

DMUs={DMU,DMU,DMU,DMU,DMU}


Now, using the model (7), to distinguish the extreme efficient unit of non-extreme efficient unit, we obtain that all DMUs are extreme efficient, because the model (7) is infeasible, when we evaluate every one of them with it.   
6 Conclusions

In this paper we introduced some of the models and theorems in order to identify and classify DMUs regarding to feasibility based upon the DEA revised additive model. At first, we divided DMUs in two bundles of efficient and inefficient, and then the efficient DMUs are classified to two groups; that is, extreme-efficient and non-extreme efficient. In this study, we solved several models to identify and classify DMUs, being worthwhile and significant, when one can only use the feasibility property for models. Finally, we recommended to readers to focus on obtaining and classifying DMUs without solving its corresponding models, for sample refer to [6], such that, the efficient DMUs are ranked in it without solving the model.
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