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Abstract This paper presents a novel multi-objective mathematical model of a periodic vehicle
routing problem (PVRP) in a competitive situation for obtaining more sales. In such a situation, the
reaching time to customers affects the sale amount; therefore, distributors intend to service customers
earlier than other rivals for obtaining the maximum sale. Moreover, a partial driver’s benefit is related
to the amount of their sale; thus, the balance of goods based on the vehicles capacity is important. Due
to its complexity, it is so difficult to optimally solve this problem in a reasonable computational time.
Hence, two algorithms are proposed based on multi-objective particle swarm optimization (MOPSO)
and NSGAII algorithm. A comparison of our results with three performance metrics confirms that the
proposed MOPSO is an efficient algorithm for solving the competitive PVRP with a reasonable
computational time.

Keywords Periodic Vehicle Routing Problem, Competitive Time Windows, Multi Objective
Optimization, MOPSO.

1 Introduction

The Vehicle Routing Problem with Time Windows (VRPTW) arises frequently in many
distribution systems. Applications often involve additional constraints that may complicate
the solution process. The VRP with hard (soft) time window constraints is abbreviated as
VRPHTW (VRPSTW). The VRPSTW is a relaxation of the VRPHTW and violation from
time windows constraint is allowed if a penalty is paid. Some of applications of the VRPTW
include grocery distribution, school bus routing, oil and petroleum delivery, bank deliveries,
postal deliveries, industrial refuse collection, and JIT (just in time) manufacturing.

In PVRPTW problem, each customer v; €V specifies a set k (i) of combinations, and the
visit days are assigned to the customer by selecting one of these combinations, thus the
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vehicles must visit the customer v; on the days belonging to the selected combination. For
example, in a 6-day planning period, if the customer v; specifies the two visit day
combinations {1, 3, 5} and {2, 4, 6}, then the vehicles must visit the customer v; on the days
1, 3 and 5 if the combination {1, 3, 5} is selected while selecting combination two means the
vehicles must visit the customer i on the days 2,4 and 6 [1].

Alegre et al. [1] applied scatter search for solving the PVRP and solved this problem for
automotive Angelelli Company and Speranza (2002) by a tabu search algorithm. Their
problem was near to multi depot periodic vehicle routing problem. In this problem when
vehicles visited intermediate facilities their capacities replenished. Hemmelmayr et al. [2]
presented variable neighborhood search heuristic to solving PTSP problem. Their paper had
two contributions, first they used VNS algorithm to solve the PVRP and second their method
gain best results in some test problems. In the beginning, authors generated initial solution
choice combination of customers randomly then they applied Clarck and Wright’s algorithm
for daily tours. Then the authors made use of OR interchange instead of local search method.
Francis et al. [3] presented an extension type of periodic vehicle routing problem that the
number of visit for each customer was one of the dictions in the problem that this problem
was called as PVRP with Service Choice.

Due to the importance of service time presented by other companies in real world,
distribution companies design the routes of fleets with respect to the condition of other
competitors to obtain the maximum sale.

In competitive environment several distributers are in competition and arriving to the
customers earlier than other competitors impress to amount of sale therefore each competitor
tries to arrive to the customers earlier than the others. The demand of each customer is divided
in two parts. The first part (d i) does not depend on the time and should be sent to the
customer completely and the second part (d «i) is the time-dependent. It will be lost if the
rival’s arrival time is earlier than vehicle’s arrival time to the customer. Therefore, the
distributor’s reaching time to the customers influences on the amount of sales.

This type of PVRP needs to consider some other parameters such as competition between
distributors and the best time to visit each customer for getting optimum cost and purchase
that classical PVRP and PVRPTW are unable to achieve the good solutions for this kind of
problem. As we know, the competitive approach on the PVRP has not been considered so far;
hence, this paper can be considered as the first work on the PVRPCTW. In this paper the
proposed problem is solved using MOPSO and the results compared by results obtained by
NSGAII algorithm.

The rest of the paper is organized as follows. Section 2 introduces the PVRPCTW and
details of the problem solving methodologies are represented in section 3. Section 4
summarizes the result of this study and suggests further direction in this research. Finally, a
conclusion is presented in section 5.


http://ijorlu.liau.ac.ir/article-1-83-en.html

[ Downloaded from ijorlu.liau.ac.ir on 2025-11-07 ]

A New Competitive Approach on Multi-Objective ... 35

2 The statement of the problem

In a competitive environment, it’s important to attend the time of service presented to the
customers in such a manner that if the vehicle presents service to the customers later than its
rival, it will miss a partial of its sale. For this reason, distributing companies define routing of
their vehicles based upon other rival companies’ strategies for serving customers. In other
words, distribution of goods is not exclusive in the real world situation and more
consideration is needed for the vehicle routing problem in competitive environment. This
competition is occurred in which products have short life time and customers need special
devices for keeping them. In this situation reaching the time of distributor influences the sales
amount. Hence; a problem presented in this paper to route of vehicles in competitive
environment such that it can be considered as a new version of PVRP with time windows.
This problem is proposed under the condition that a competition is between distributors to
obtain the market share.

Before presenting the model, these parameters are introduced to clarity the problem.

The number of days in the planning horizon is denoted by M. A set of m homogenous
vehicles is given and the maximum capacity and working time are denoted by Q and T
respectively. Let G= (V, 4) be a complete graph consisting of vertex and arc sets.
V={vy,v,...,v,} 1s the vertex set and that consists of n + 1 nodes and , A={(vi,vj): vi,v EV} is
the arcs set which each arc (vi,v) is associated with a non-negative cost Cj. The vy is
associated to the depot and remaining vertices of V' represent customers to be serviced.

e Lower bound of rival’s arrival time to node i

l; Upper bound of the rival’s arrival time to node i

tri Rival’s arrival time to node i

tdi Actual distributer’s vehicle arrival time to node i

fr(x) Probability distribution function of the rival’s arrival time to node i
Fr(x) Cumulative distribution function of the rival’s arrival time to node i
dtdi Time-dependent demand of node i

dini Time-independent demand of node i

Di Maximum number of the customer’s demand in node i

E(Di) Expected value of the customer’s demand in node i

Each node has predetermined the demand denoted by Di demand of node i is divided in two
parts, Di = dui+ dini, diwi 1s time dependent demand of node i and amount of it depend on time
of visiting customer. dini is part of demand that independent to the time of service. A rival
presents its services to each vertex with probability distribution function within a specified
time window [e;, l;] in each day that e; and I; are nonnegative. e; is the earliest rival’s arrival
time to node i and I; is the latest rival’s arrival time to node i. Each arc has nonnegative
associated travel times cj;. The travel time c;; includes a service time at node i. The VRPTW
consists of designing M tours on G in each day that satisfied some conditions as: 1) every
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route starts and ends at the depot; 2) each customer must be served with exactly one vehicle
and split service and multiple visits are forbidden; 3) a vehicle is allowed to arrive before the
opening of the time window without missing any sale, but arriving after the latest time
window causes the distributer lose the first part of demand, dwi. If arriving time occurs in the
time windows, expected value of visit customer before rival reduces according to the
probability distribution function of rival’s arrival time. The rival’s service time distribution to
the customers can be determined using stochastic methods. In this paper, it is assumed that the
rival’s arrival time distribution to customer i follow the uniform distribution in which
probability of serving node i before its rival calculated using Eq.1 as follows:

pt, >t;)=1-F.(t;) (1)

In Eq. 1 the P(x) is the probability of x and ¢, and s are arriving time of rival and distributer
respectively and F (x)is the cumulative distribution function of rival’s arrival time. The

Probability of reaching the vehicle to customer i earlier than its rival is shown in Fig. 1.
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Fig. 1 Probability of receiving to node i earlier than its rival

Now, the probability of reaching to customer i earlier than its rival in time of #; is computed
by:
1 if ot <t,
plt,<t)=<1-F.(t,) if t,<t,<t, (2)
0 if ot =t

Due to the above equation, if the vehicle reaches to node i in the bound [0,#;], then it will
reach to the customer earlier than its rival definitely. But, if the vehicle reaches to node i in
the bound [#;, t,], then with the probability of p(¢;)=1-F(ts) , it will serve node i earlier than
its rival. Finally, if the vehicle reaches to node i after 7,, it will reach to node i with the
probability of p(t;)= 0 earlier than its rival. In this case, the customer’s time-dependent
demand is affected to the service time presented, while if the rival distributor reaches to node i
earlier, this part of the demand will be missed.
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3 Solution procedures

In this section first the framework of propose MOPSO is presented, and then NSGAII
algorithm is described.

3.1 MOPSO framework

The MOPSO framework for solving the problem is as follows.

1.

A ol

Generate an initial solution vector X{(7) for i=0: pop size

Initialize the velocity of each particle for i=0: pop size, VEL (i) =0

Initialize Pbest of each particle; for i=0: pop size, Pbest(i)= X(i)

Calculate the objective functions of each particle.

Store the non-dominated vectors particles’ positions based on their objective functions
in repository.

In objective space, each particle’s coordinates are described according to the values of
its objective functions. Divide each axis of objective space to n segments and generate
hypercubes in this space.

Do the following steps till the maximum number of iteration is achieved

Update the velocity of each particle as follows:

VEL(t+1)=w VEL(t) + ¢; Randl(pbest- x (t)) +c; Rand2(REP- x (f)) 3)

where 7 is the current iteration of the algorithm, ¢; and ¢, are the acceleration coefficients that
affect on the particles movement, Randl and Rand 2 are uniform random numbers in the
interval [0, 1], and w is the inertia weight which controls the convergence of the algorithm.
Drest 18 the personal best position of a particle, and REP is the global best position that
dominates all particles taken from the repository.

9.

Compute the new particle’s position by the previous particle’s position and its velocity
vector based on Eq. (3).

x (t+1)=x ())+VEL (¥) ()

10. Update the repository and then select REP for the next iteration. Each solution is

selected as REP with the probability based on the following formula. The fewer
particles in each hypercube, the more chance to be selected.

-p.n;
D= (5)
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11. Update Pbest of each particle. If the new particle’s position dominates its Pbest, then

the new position replaces in Pbest and vice versa. If neither of them is dominated by
the others, then one of them is selected randomly with the probability 0.5.

3.2 The NSGA-II framework

Now, the NSGA-II steps to implement are as follows.

1.
2.

Generate a population of solutions with size N.

Sort the population of non-domination solutions into each front. Assign a rank to each
individual based on their fitness values. Those solutions are never dominated by any
other solution are in rank 1(front 1) and the next best solutions are in rank 2 (front 2)
and so on.

Calculate the crowding distance for each individual in order to estimate the density of
the individuals to each other in each front.

Select parents from the population by using a binary tournament selection based on the
front rank and crowding distance. An individual is selected if it has been located in a
lower rank or has been a greater crowding distance than the other if it belongs to the
same rank with other individuals.

Generate offspring (Q,) from the selected population (P;) by crossover and mutation
operators discussed in details in [4].

Sort the combined populations containing of the previous population (P;) and current
offspring (Q;) based on non-domination and only the best N individuals are selected,
where N is the population size. An individual is selected based on its rank. In the last
front, individuals with greater CD are selected. Repeat steps of the algorithm for the
pre-determined iterations.

4 Computational experience

Evaluating the multi-objective algorithms performances is more complicated than the single

objective algorithms. Many researchers in the last decade have investigated some good
criteria to evaluate the multi-objective algorithms performances [5]. To evaluate the quality of
the solution sets obtained by the MOPSO and NSGA-II algorithms, three performance metrics
are used as follows:

4.1 The quantity metric

The quantity metric measures the number of the non-dominated solutions set of each
algorithm.
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4.2 The C metric

The C metric was introduced by Zitzler (1998), in which two sets of non-dominated solutions
can be compared to each other by this metric.

|{beB|EIaeA:a2b}|

C(4,B) = 3

(6)

where 4 and B are two sets of non-dominated solutions for the first and second algorithms. |X]
illustrates a number of members of set X.
4.3 The spacing metric

The spacing metric has been introduced by Schott (1995). It measures the solution sets
diversity on the Pareto front distributed in the objective space. This metric is computed by:

1 &= 2
E:\/HZ(d—dl.) (7)

i=1

M

d. =min,j#i( 2,
i

m =1

1" —f]'."‘) 8)

where m is the objective functions counter and d; is the minimum distance of solution i with

other solutions in the Pareto set in the objective space. d is the mean of all d; and # is the size
of the non-dominated solution sets.

To evaluate the proposed MOPSO and NSGA-II for the given problems, the standard
benchmark instances proposed by Cordeau are used and all of the customers’ demands are
considered as time dependent demands.

The obtained results from solving test problems are shown in Table 1. In this table,
column one is the problem name. Columns 2 to 5 are related to the MOPSO algorithm to
demonstrate the run time, quantity metric, C metric and spacing metric, respectively. The
other columns are related to the performance of the NSGA-II algorithm.
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Table 1 Comparison of the proposed algorithms performances

MOPSO NSGA-II

Problem Run.time Q.Metric C.Metric S.Metric Run.time Q.Metric C.Metric S.Metric
Al 132.24 5 1 0.34 297.55 32 0 2.56
A2 135.47 14 0.95 2.44 298.63 65 0.20 2.78
A3 134.71 22 0.87 2.23 287.15 43 0.28 1.98
A4 148.53 20 1 3.21 376.45 12 0 2.45
A5 136.21 8 0.98 0.87 327.33 8 0.18 1.19
A6 134.05 6 1 1.59 310.15 5 0 1.54
A7 135.41 7 0.83 0.66 297.53 27 0.22 2.22
A8 135.23 6 1 0.86 302.31 7 0 1.66
A9 93.54 2 1 2.13 295.31 19 0 1.98
A10 102.43 13 1 1.52 305.39 56 0 1.12
Avffage 12878 103 0.97 1.58 30978 2745  0.088  1.948
Problems

The run times of MOPSO and NSGA-II are acceptable; however, the run time of MOPSO
is significantly better than NSGA-II. The average runtime for MOPSO is 128.78 while this

time for NSGA-II is 309.78 seconds. The maximum runtime is for the A4 problem with
148.53 and 376.45 seconds in MOPSO and NSGA-II, respectively.

5 Concluding remarks and future directions

This paper presented a new class of PVRP that arise in a competitive environment which
named the periodic vehicle routing problem with competitive time windows (PVRPCTW).
This type of PVRP needs to consider some other parameters such as competition between
distributors and the best time to visit each customer to get the optimum cost and purchase that
classical PVRP and PVRPTW are unable to achieve the good solutions for these kinds of
problems. The objectives of the problem were to find the short routes with the minimum
travel cost, maximum sales for company and to balance the distributed goods by vehicles
regarding their capacities. In this paper, the proposed problem was solved using MOPSO, and
the results were compared by results obtained by NSGAII. The results showed that the
MOPSO algorithm was better performing according to the performance metrics.
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