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Abstract The main aim of this paper is to deal with a fuzzy version of Farkas lemma involving 
trapezoidal fuzzy numbers. In turns to that the fuzzy linear programming and duality theory on these 
problems can be used to provide a constructive proof for Farkas lemma. 
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1 Introduction 
Farkas’ lemma is a key ingredient to establish the Karush-Kuhn-Tucker optimality conditions 
that are both necessary and sufficient for linear programming problems. The result deals with 
two linear systems of equations and inequalities, exactly one of which has a solution in any 
instance. But sometimes in real situations there is an ambiguity in some parameters of the 
system. Frankly, it is possible that some of the parameters of the linear systems be fuzzy 
numbers. Therefore, the studies of these systems are important in the literature. In this work, 
we focus on Farkas’ lemma and define a fuzzy version of it. Then we give a constructive 
proof of the fuzzy version of Farkas lemma by using the fuzzy linear programming and 
duality theory on these problems established by Mahdavi-Amiri and Nasseri [1]. This paper is 
organized as follows: In Section 2, we review some preliminaries which are needed in next 
sections. We define a fuzzy linear programming in Section 3and give some duality results on 
these problems. In Section 4, we give a fuzzy version of Farkas’ lemma and also give a 
constructive proof for fuzzy Farkas lemma by using fuzzy linear programming problems and 
duality theory. 
 
 
2 Preliminaries 
2.1 Definitions and Notations 
 
We review the fundamental notions of fuzzy set theory. 
Definition 1. A convex fuzzy set ܣሚon ℝ is a fuzzy number if the following conditions hold: 
(a) Its membership function is piece-wisely continuous. 
(b)There exist three intervals [ܽ, ܾ], [ܾ, ܿ]and [ܿ, ݀]such that ߤ෨is increasing on [ܽ, ܾ], equal to 
1 on [ܾ, ܿ], decreasing on [ܿ, ݀] and equal to 0 elsewhere. 

                                                             
*Corresponding Author.() 

E-mail: nasseri@umz.ac.ir (S. H. Nasseri) 
 
S. H. Nasseri 

Department of Mathematics, University of Mazandaran, Babolsar, Iran. 
 
S. Chitgar 

Department of Mathematics, Sharif University of Technology, Tehran, Iran. 



36 S. H. Nasseri,  S. Chitgar / IJAOR Vol. 2, No. 1, 35-40, Spring 2012 (Serial #4) 

 
Definition 2. Let ܣሚ = (ܽ, ܽ , ,ߙ denote the trapezoidal fuzzy number, where (ܽ (ߚ −
,ߙ ܽ − ,ሚ and [ܽܣ  is the support of (ߚ ܽ] its core. 
Remark 1. We denote the set of all trapezoidal fuzzy numbers by ℱ(ℝ). 
 

Now we define the concept of arithmetic on trapezoidal fuzzy numbers which is useful in 
throughout the paper. Let ܽ = (ܽ, ܽ, ,ߙ and ෨ܾ (ߚ = (ܾ , ܾ , ,ߛ  be two trapezoidal fuzzy (ߠ
numbers. Define, 

ݔ ≥  0, ݔ ∈ ℝ; ݔ  ܽ  = ܽݔ)  , ܽݔ , ,ߙݔ  (ߚݔ
ݔ <  0, ݔ ∈ ℝ; ݔ  ܽ  = ܽݔ)  , ,ܽݔ ,ߚݔ−  (ߙݔ−
ܽ  +  ෨ܾ  =  (ܽ +  ܾ , ܽ +  ܾ , + ߙ ,ߛ  + ߚ  .(ߠ 
ܽ −  ෨ܾ =  (ܽ − ܾ , ܽ − ܾ , + ߙ ,ߠ  + ߚ  .(ߛ 

 
 
2.2 Ranking functions 
 
One convenient approach for solving the fuzzy linear programming problems is based on the 
concept of comparison of fuzzy numbers through the use of ranking functions [1, 2, 3]. An 
effective approach for ordering the elements of ℱ(ℝ) is to define a ranking function ℛ ∶
 ℱ(ℝ)  → ℝ which maps each fuzzy number into the real line, where a natural order exists. 
 

We define orders on ℱ(ℝ) by: 
 

ܽ ≽ ෨ܾ  if and only if  ℛ( ܽ) ≥ ℛ(෨ܾ )  (1) 
ܽ ≻ ෨ܾ  if and only if  ℛ( ܽ) > ܴ(෨ܾ )  (2) 
ܽ ≃ ෨ܾ if and only if  ℛ( ܽ) =  ℛ( ෨ܾ ) (3) 

 
where  ܽand  ෨ܾ are in ℱ(ℝ). Also we write ܽ ≼ ෨ܾ if and only if ෨ܾ ≽ ܽ. 

 
We restrict our attention to linear ranking functions. 
Remark 2. For any trapezoidal fuzzy number ܽ, the relation ܽ ≽ 0෨ holds, if there exist ߝ ≥  0 
and ߙ >  0 such that ܽ ≽ ,ߝ−) ,ߝ ,ߙ ,ߝ−)We realize that ℛ .(ߙ ,ߝ ,ߙ (ߙ =  0 (we also consider 
ܽ ≃ 0෨  if and only if ℛ( ܽ)  =  0). Thus, without loss of generality, throughout the paper we let 
0෨  =  (0, 0, 0, 0) as the zero trapezoidal fuzzy number. 
The following lemma is now immediately in hand [2]. 
Lemma 1. Let ℛ be any linear ranking function. Then, 
(i)  ܽ ≽ ෨ܾ if and only if ܽ − ෨ܾ ≽ 0෨ if and only if −෨ܾ ≽ − ܽ 
(ii) If  ܽ ≽ ෨ܾ  and ܿ̃ ≽ ሚ݀, then ܽ + ܿ̃ ≽ ෨ܾ + ሚ݀. 

 
We consider the linear ranking functions on ℱ(ℝ) as: 
 

ℛ( ܽ) = ܿܽ + ܿܽ + ܿఈߙ + ܿఉ(4)  ߚ 
 
where ܽ =  (ܽ, ܽ, ,ߙ ,and  ܿ ,(ߚ ܿ, ܿఈ , ܿఉ are constants, at least one of which is non-zero. A 
special version of the above linear ranking function was first proposed by Yager [2, 3] as 
follows: 
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ℛ( ܽ) = ଵ
ଶ ∫ (inf ܽఒ + sup ܽఒ)݀ߣଵ

  (5) 
which reduces to 

ℛ( ܽ) = ಽାೆ

ଶ
+ ଵ

ସ
ߚ) −  (6)   (ߙ

 
Then, for trapezoidal fuzzy numbers ܽ =  (ܽ, ܽ , ,ߙ and ෨ܾ (ߚ =  (ܾ, ܾ , ,ߛ  we have ,(ߠ
ܽ ≽ ෨ܾ  if and only if ܽ + ܽ + ଵ

ଶ
ߚ) − (ߙ ≥ ܾ + ܾ + ଵ

ଶ
ߠ) −  (7)  (ߛ

 
 
3 Fuzzy linear programming problems 
 
Authors who use ranking functions for comparison of fuzzy numbers usually define a crisp 
model which is equivalent to the fuzzy linear programming problem and then use the optimal 
solution of this model as the optimal solution of fuzzy linear programming problem [1, 2].We 
now define fuzzy linear programming problems and the corresponding crisp models. 
 
 
3.1 Formulation of the fuzzy linear programming problem 
Definition 3. A Fuzzy Linear Programming (FLP) problem is defined as follows: 
 

Max      ̃ݖ ≃  ,ݔ̃ܿ
s. t.        ܣሚݔ ≼ ෨ܾ,  (8) 

ݔ   ≥ 0. 
 
where ܣሚ = ( ܽ)× , ܿ̃ = (ܿଵ̃, … , ܿ̃), ෨ܾ = ൫෨ܾଵ, … , ෨ܾ൯்

 and ܽ , ෨ܾ , ܿ̃ ∈ ℱ(ℝ)  for ݅ =
1, … , ݉, ݆ = 1, … , ݊. 
 
Definition 4. Any ݔ which satisfies the set of constraints of FLP is called a feasible solution. 
Let ܳ be the set of all feasible solutions of FLP. We say that ݔ ∈ ܳis an optimal feasible 
solution for FLP if ܿ̃ݔ ≤ ݔ  for allݔ̃ܿ ∈ ܳ. 
Definition 5. We say that the real number a corresponds to the fuzzy number ܽ, with respect 
to a given linear ranking function ℛ, if  ܽ =  ℛ( ܽ). 

The following theorem shows that any FLP can be reduced to a linear programming 
problem (see in [2]). 

Max       ̃ݖ ≃  ,ݔ̃ܿ
s. t.         ܣሚݔ ≼ ෨ܾ,  (9) 

ݔ   ≥ 0. 
         
where ܽ , ܾ , ܿ are real numbers corresponding to the fuzzy numbers ܽ , ෨ܾ , ܿ̃ with respect to 
a given linear ranking function ℛ, respectively. 
Remark 3. The above theorem shows that the sets of all feasible solutions of FLP problem 
and LP problem are the same. Also if ̅ݔ is an optimal feasible solution for FLP problem, then 
 .is an optimal feasible solution for LP problem ݔ̅
Corollary 1. If LP problem does not have a solution then FLP problem does not have a 
solution either. 
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3.1 Optimality Conditions 
 
Consider the FLP problem (in the standard form), 
 

Max        ̃ݖ ≃  ,ݔ̃ܿ
s. t.          ܣሚݔ ≃ ෨ܾ,   (10) 

ݔ ≥ 0. 
 
where the parameters of the problem are as defined in (8). 
The following theorem characterizes optimal solutions. The result corresponds to the so-
called nondegenerate problems, where all basic variables corresponding to every basis B are 
nonzero (and hence positive). 
 
Theorem 1. Assume the FLP problem is nondegenerate. A basic feasible solution ݔ =
,ଵܾିܤ ேݔ = 0 is optimal to (10) if and only if ̃ݖ ≽ ܿ̃ for all 1 ≤ ݆ ≤ ݊. 
 
 
4 Duality in fuzzy linear programming 
 
Similar to the duality theory in linear programming (see for example [4]), for every FLP 
problem, there is an associated problem which satisfies some important properties. We shall 
call this related FLP problem the DFLP problem [1]. 
 
 
4.1 Formulation of the dual problem. For the FLP problem 
 

Max        ̃ݖ ≃  ,ݔ̃ܿ
s. t.          ܣሚݔ ≼ ෨ܾ,    (11) 

ݔ ≥ 0. 
 
define the Dual Fuzzy Linear Programming (DFLP) problem as: 
 

Min        ݑ ≃ ߱ ෨ܾ , 
s. t.          ߱ܣሚ ≽ ܿ̃,    (12) 
              ߱ ≥ 0. 

 
Note that there is exactly one dual variable (of the form ≥ 0) for each FLP problem 

constraint of the form ≼ and exactly one dual constraint (of the form ≽) for each variable of 
the form ≥ in FLP problem. 
 
 
4.2 The relationships between FLP and DFLP problems 
 
We shall give here the relationships between the fuzzy linear programming problem and its 
corresponding duality and omit the proofs (for more details see [1]). 
Lemma 2. Dual of DFLP problem is FLP problem. 
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Remark 4. Lemma 4 indicates that the duality results can be applied to any of the primal or 
dual problems posed as the primal problem. 
Theorem 2. (The Weak Duality Property.) If 0ݔ and 0ݓ are feasible solutions to FLP problem 
and DFLP problem, respectively, then ܿ̃0ݔ  ≼ 0ݓ ෨ܾ. 
Remark 5. The value of the ranking function for the fuzzy value of the objective function at 
any feasible solution to FLP problem is always lower than or equal to the value of the ranking 
function for the fuzzy value of the objective function for any feasible solution to DFLP 
problem. 
The following corollaries are immediate consequences of Theorem 2. 
Corollary 2. If 0ݔ and 0ݓ are feasible solutions to FLP problem and DFLP problem, 
respectively, and ܿ̃0ݔ  ≃ 0ݓ ෨ܾ, then 0ݔ and 0ݓ are optimal solutions to their respective 
problems. 
The following corollary relates unboundness of one problem to infeasibility of the other. We 
use the definition below. 
Definition 6. We say FLP problem (or DFLP problem) is unbounded if feasible solutions 
exist with arbitrary large (or small) ranking function for the fuzzy objective value. 
Corollary 3. If either problem is unbounded, then the other problem has no feasible solution. 
We now state the main duality result. 
Theorem 3. (Strong Duality) If any one of the FLP problem or DFLP problem has an optimal 
solution, then both problems have optimal solutions and the two optimal values of ranking 
functions for the fuzzy objective values are equal. 
Using the results of the lemmas, corollaries, and remarks above we obtain the following 
important duality result. 
Theorem 4. (Fundamental Theorem of Duality.) For any FLP problem and its corresponding 
DFLP problem, exactly one of the following statements is true. 
(1) Both have optimal solutions ݔ∗ and  ݓ∗ with  ܿ̃ݔ∗ ≃ ∗ݓ ෨ܾ . 
(2) One problem is unbounded and the other is infeasible. 
(3) Both problems are infeasible. 
 
 
5 A Fuzzy Version of Farkas Lemma 
 
Farkas lemma is a key ingredient to establish the Karush-Kuhn-Tucker optimality conditions 
that are both necessary and sufficient for linear programming problems [4]. Here we give a 
fuzzy version of this result. 
 
Lemma 5. (Fuzzy Farkas’ Lemma) 
Consider the following fuzzy linear systems, 
 

ݔሚܣ ≽ 0෨, ݔ̃ܿ ≺ 0෨  (13) 
ሚܣݕ ≃ ܿ̃, ݕ ≥ 0   (14) 

 
Proof. It is enough to show that if there exists an ݔ with ܣሚݔ ≽ 0෨ and ܿ̃ݔ ≺ 0෨ , then there is not 
any ݕ ≥ 0 with ܣݕሚ ≃ ܿ̃. Conversely, if there exists no ݔ with ܣሚݔ ≽ 0෨ and ܿ̃ݔ ≺ 0෨ , then there 
exists a ݕ ≥ 0 such that ܣݕሚ ≃ ܿ̃.  First, suppose that System (13) has a solution ݔ. If System 
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(14) also has a solution ݕ, then by using Lemma 1 we have ܿ̃ݔ ≃ ݔሚܣݕ ≽ 0෨, since ݕ ≥ 0 and 
ݔሚܣ ≽ 0෨. This contradicts ܿ̃ݔ ≺ 0෨ ; therefore, System (14) cannot have a solution.  
Next, suppose that System (13) does not have a solution. Consider the following problems: 
 

Min         ܿ̃ݔ, 
s. t.           ܣሚݔ ≽ 0.෩             (15) 

 
 

Max        0ݕ෨ ≃ 0෨, 
s. t.           ܣݕሚ ≃ ܿ̃,             (16) 
ݕ                ≥ 0. 

 
It is obvious that Problem (15) is feasible and  ሚ݀ = 0 is the optimal solution for Problem 

(15) (the optimal fuzzy value of the objective function is zero). System (13) has not any 
solution. Now by using Theorem 3 (Strong Duality Theorem), Problem (16) is feasible and its 
optimal fuzzy value of the objective function is zero. Now if  be every feasible solution for 
Problem (16) then  is a solution for System (14). The proof is complete. 
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