
International Journal of Applied Operational Research

Vol. 12, No. 2, pp. 95-103, Spring 2024

Journal homepage: ijorlu.liau.ac.ir

Optimization of active microarchitecture design

A. Sedaghat

*
, J. Porkar, I. Nejati

Received: 4 December 2023 ; Accepted: 15 March 2024

Abstract A complementary follow-on tool is required to optimize the geometric parameters of the

topology solutions once the flexure design topology of an active micro-architected material has been

synthesized. This will enable the production of final designs that not only meet the desired DOFs for

the constituent materials but also best meet the desired performance requirements. This paper

introduces a computational tool to identify the boundaries of the performance capabilities achieved by

general flexure system topologies, provided that their geometric parameters are allowed to vary from

their smallest allowable feature sizes to their largest geometrically compatible feature sizes for given

constituent materials. The boundaries fully define flexure systems' design spaces and allow designers

to visually identify which geometric versions of their synthesized topologies best achieve desired

combinations of performance capabilities.

Keyword: Optimization, Topologies, Micro Artificial Material, Metrical System, Fletcher System.

1 Introduction

A model that describes the performance of an active architecture design with a given set of

design parameters must be established to set up the optimization problem. This model can be

1-a real experiment, whose parameters can be arbitrarily changed or controlled, 2- a finite

element analysis (FEA)-based numerical model, 3- a closed-form analytical model for the

parameterized topologies, or 4- a regression model based on data generated by finite element

analysis or real experiments. This paper introduces a tool that can optimize the parameters of

flexure system topologies and be applied to a host of other diverse applications.

System performance boundary identification is a relatively new field of study, but it

shares many of the same objectives as the well-studied multi-objective optimization. A multi-

objective optimization problem (MOOP) deals with more than one objective function, which

aims to find a set of solutions to simultaneously optimize all the objective functions. Several

methods, such as the weighting method as one of the most widely used methods, have been

proposed to solve sets of local or global Pareto-optimal solutions [1]. The ε-constraint method

* Corresponding Author. ()

E-mail: sedaghat.alirezaa@gmail.com (A. Sedaghat)

A. Sedaghat

 Faculty of Mechanical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran

J. Porkar

 Faculty of Mechanical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran

I. Nejati

 Faculty of Mechanical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
24

-1
-6

58
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
or

lu
.li

au
.a

c.
ir

 o
n

20
25

-0
7-

10
]

 1 / 9

https://ijorlu.liau.ac.ir/admin_emailer.php?mod=send_form&sid=1&slc_lang=fa&em=sedaghat.alirezaa-ATSIGN--GMMAAIL-.com&a_ordnum=658
http://dx.doi.org/10.71885/ijorlu-2024-1-658
https://ijorlu.liau.ac.ir/article-1-658-en.html

96 A. Sedaghat and et al./ IJAOR Vol. 12, No. 2, 95-103, Spring 2024 (Serial #41)

was first proposed by Haimes et al. [2], the method of the global criterion was first unveiled

by Yu [3], and the achievement scalarizing function (ASF) approach was first introduced by

Wierzbicki [4,5]. Other solving methods include normal boundary intersection (NBI) [6],

evolutionary algorithms (EAs) [7], lexicographic ordering [8], and goal programming [9].

More recently, MOOP methods have focused on stochastic optimization algorithms, including

various EAs [10,11]. Such algorithms generate more reliable global Pareto-optimal solution

sets but require significantly more function evaluations than deterministic algorithms and are

thus generally better suited for complicated black-box-model optimizations. The boundary

identification approach proposed in this paper has, in part, been adapted from various

deterministic MOOP methods such that the complete continuous boundary (including concave

portions) that circumscribe the performance capabilities achieved by general flexure

topologies can be identified and refined with a desired accuracy.

The utility of this computational tool combined with the current flexible assertive

community treatment (FACT) approach results in a novel advantageous approach that sets

itself apart from other existing design optimization approaches. Whereas other approaches,

e.g., topology optimization [12–14] or module optimization [15], simultaneously combine the

design typology optimization with geometry optimization tasks, the proposed approach

decouples those tasks in such a way that the time-consuming computations are reserved solely

for the simpler geometry optimization task only. This optimization occurs after the FACT

approach has directly generated and finalized the most promising topologies without

performing expensive iterative calculations. Thus, by decoupling the topology synthesis and

geometry optimization tasks, the speed at which optimal designs can be generated from start

to finish, as well as the likelihood of identifying the global optimum solutions, increases. The

boundary identification approach proposed in this paper has in part been adapted from various

deterministic multi-objective optimization methods such that the complete continuous

boundary (including concave portions) that circumscribe the performance capabilities

achieved by general flexure topologies can be identified and refined with a desired accuracy.

2 Performance boundary identification

The optimization problem is set up where a flexure system topology's design parameters are

the model inputs, xi, and the performance capabilities achieved by the design instantiations

defined by these corresponding input parameters are the model outputs, fj. Constraint

functions are also provided to define the combination of input values permissible.

A boundary search algorithm consists of two main processes: directional maximization and

gap reduction. Both processes rely on an optimization approach that implements two

numerical optimization methods, i.e., the Sequential Quadratic Programming (SQP) [16,17]

algorithm and Augmented Lagrangian Pattern Search (ALPS) [18–20] algorithm, to achieve

the local extremum of an objective function.

In each local optimization process, the SQP method is implemented first. The SQP

method starts with a given initial guess and attempts to compute, or "step to," another " closer

" point to the local extremum. At each point, the gradient (derivatives) and Hessian matrix

(the symmetric matrix of second derivatives) of the objective function are approximated using

adjacent points and then used to construct a Quadratic Programming (QP) subproblem [21].

The solution of this QP subproblem is used to compute the step towards the next point. The

SQP process terminates when the "step" is smaller than a prescribed resolution of the input

parameter in all directions xi or when it fails to generate the next point. This typically occurs

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
24

-1
-6

58
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
or

lu
.li

au
.a

c.
ir

 o
n

20
25

-0
7-

10
]

 2 / 9

http://dx.doi.org/10.71885/ijorlu-2024-1-658
https://ijorlu.liau.ac.ir/article-1-658-en.html

Optimization of active microarchitecture design 97

because the derivatives or second derivatives of the specific objective function cannot be

correctly evaluated to set up the QP subproblem.

Once the SQP process terminates, the algorithm proceeds with the optimization process

by implementing the ALPS method to solve for the local extremum of the same objective

function, starting at the point corresponding to the best inputs (that generate the maximum or

minimum value of the objective function) identified using the SQP method. The ALPS

algorithm searches for a better value of the augmented Lagrangian function [22] among a set

of points, called a mesh, located around the current point (the center point of the mesh) at a

distance ±ri, along the direction of each input parameter xi. The distance ri is called the mesh

size and is initially chosen to be between 10% and 30% of the total range of each xi. If there is

a point among the mesh points that increases the value of the augmented Lagrangian function

over the current mesh center point, it becomes the new center point in the next step, and the

mesh size ri increases by a factor of k, which is typically set to be 2. On the other hand, if no

improvements can be achieved from all the mesh points around the center point, the mesh size

decreases by a factor of k. The objective function converges to its extremum value by taking

these iterative steps. The ALPS process terminates when the mesh size is smaller than the

prescribed resolution in every direction.

A theoretical example of a system with only two inputs, x1 and x2, is used to conceptually

explain how the boundary search algorithm employs the local optimization approach to plot a

concave boundary that circumscribes the full system design space for two of the system's

achievable outputs, f1(x1, x2) and f2(x1, x2). Figure 8A shows the constraint function for this

theoretical example as the red spline boundary line.

The algorithm begins with the directional maximization process. Starting at an initial

guess, this algorithm first identifies a set of other allowable input combinations that result

from adding and subtracting the resolution increment of each input, Δxi, to and from the first

randomly selected combinations of inputs along each input's axis. In the example shown in

Figure 8A, this first set of input combinations is shown as the four blue dots immediately

surrounding the blue dot labeled O1,1. Note that although Δx1 is shown as equal to Δx2, these

resolution increments do not have to be equal for other scenarios. The system's model is then

used to map all these input combinations to their corresponding output combinations,

represented by the five blue dots shown in Figure 8B. The original input dot, O1,1, maps to the

output dot, Z1,1. The SQP algorithm then approximates the gradient and Hessian matrix of the

objective function defined by

 () () () () () (1)

using the input and output combinations (i.e., the adjacent blue dots in Figure A and

Figure 8B), where θ is initially set to 0, the largest f2 output can be pursued first. This gradient

and Hessian matrix are then used to construct a QP subproblem. In the example shown in

Figure 8, the newly determined input combination is shown as the red dot labeled O1,2 (Figure

A). Note that the corresponding output combination of this dot, shown as the red dot labeled

Z1,2 (Figure B), possesses an f2 value larger than any of the previous blue dots. The SQP

algorithm then repeats this process by finding a new set of allowable input combinations. In

the example shown in Figure A, this new set of input combinations is shown as the four red

dots immediately surrounding the red dot labeled O1,2. Note that each of the five red dots

shown in Figure A maps to a corresponding red dot in Figure B. Thus, the SQP algorithm

rapidly finds an efficient path toward a local maximum of the objective function by iteratively

stepping from one cluster of dots to the next.

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
24

-1
-6

58
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
or

lu
.li

au
.a

c.
ir

 o
n

20
25

-0
7-

10
]

 3 / 9

http://dx.doi.org/10.71885/ijorlu-2024-1-658
https://ijorlu.liau.ac.ir/article-1-658-en.html

98 A. Sedaghat and et al./ IJAOR Vol. 12, No. 2, 95-103, Spring 2024 (Serial #41)

Once the SQP algorithm terminates, the boundary-plotting algorithm proceeds with the

optimization process by supplying allowable input combinations mapped to output

combinations that produce the largest objective-function value identified by the SQP

algorithm to the ALPS optimization algorithm. In the example shown in Figure A, the SQP

process could not step beyond the cluster of dots surrounding O1,2 and thus terminated. The

input combination supplied to the ALPS algorithm is illustrated by the red dot labeled O1,3 in

Figure A, which maps to the output combination (shown as the red dot labeled Z1,3 in Figure

B) that achieves the largest f2 value found using the SQP algorithm. The ALPS algorithm

initially identifies a set of other allowable input combinations that result from adding and

subtracting an initial mesh size, ri, to and from the input combination supplied to the

algorithm along each input's axis. The initial mesh size, r2, in Figure A, is set to 20% of the

range of its corresponding input parameter (i.e., ri=0.2|xi,max-xi,min|). In the example shown in

Figure A, the first set of ALPS-generated input combinations is depicted as the four purple

dots surrounding the red dot labeled O1,3. Although r1 is shown as equal to r2, the mesh sizes

are not typically equal for other scenarios. The system's model is then employed to map these

input combinations to their corresponding output combinations, represented by the four purple

dots (Figure B). The ALPS algorithm then identifies if any of these input combinations map

to an output combination that produces an objective-function value larger than any previously

produced during the optimization process. Suppose, for instance, that the input combination

of the example O1,4 (Figure A) maps to the output combination Z1,4 (Figure B) that achieves

the largest f2 value previously identified. The ALPS algorithm would then step to the dot

representing that input combination (e.g., O1,4). The algorithm would then identify a set of

other allowable input combinations that result from adding and subtracting the previous mesh

size (e.g., ri in this case) multiplied by an expansion factor (i.e., 2) to and from this input

combination along each input's axis. Thus, for the example shown in Figure A, the next set of

ALPS-generated input combinations are shown as the three orange dots surrounding the

purple dot labeled O1,4. These orange input dots shown in Figure A map to the three orange

output dots shown in Figure B. The algorithm then identifies if any of these output

combinations produce an objective-function value larger than any previously produced during

the optimization process. Since none of the orange dots in Figure B possess an f2 value larger

than Z1,4, the ALPS algorithm would then identify a set of other allowable input combinations

that result from adding and subtracting the previous mesh size (e.g., 2ri in this case) divided

by the same expansion factor to and from the input combination O1,4 in Figure A along each

input's axis. Therefore, for the example shown in Figure A, the next set of ALPS-generated

input combinations are shown as the three light-green dots surrounding the same purple dot

labeled O1,4. These light-green input dots shown in Figure A map to the three light-green

output dots shown in Figure B. Again, since none of the light green dots in Figure B possess

an f2 value larger than Z1,4, the ALPS algorithm would then identify another set of other

allowable input combinations that result from adding and subtracting the previous mesh size

(e.g., ri in this case) divided by the same expansion factor to and from the input combination

O1,4 in Figure A along each input's axis. Thus, for the example shown in Figure A, the next set

of ALPS-generated input combinations are shown as the four dark-green dots surrounding the

same purple dot labeled O1,4. This process repeats until either (i) one of the new input

combinations maps to an output combination with an objective-function value larger than any

produced previously, or (ii) the mesh size becomes equal to or less than a specified input

tolerance, which herein is set to the resolution of the input parameters, Δxi. If the first option

(i) occurs, the ALPS algorithm will step to the improved input combination, and the ALPS

process will continue to iterate. If the second option (ii) occurs, it will terminate. For the

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
24

-1
-6

58
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
or

lu
.li

au
.a

c.
ir

 o
n

20
25

-0
7-

10
]

 4 / 9

http://dx.doi.org/10.71885/ijorlu-2024-1-658
https://ijorlu.liau.ac.ir/article-1-658-en.html

Optimization of active microarchitecture design 99

example shown in Figure A, the second option occurred as the mesh size of the four yellow

dots shown immediately surrounding the purple dot O1,4 is equal to Δx2, and none of the new

output dots generated ever surpassed the f2 value of Z1,4, as depicted in Figure B.

Fig. 1 Progression of the SQP and ALPS optimization algorithms for θ=0 initialized in the objective function in

the input space (A) and the corresponding output space (B).

Continued progression of the same optimization algorithms for θ=Δθ incremented in the

objective function in the same input space (C) and the corresponding output space (D).

Once the SQP and ALPS algorithms have both run their full course for determining the

maximum value of J(x1, x2) from Equation (1) for θ=0, θ is then incrementally increased by

Δθ, which is typically set to a value between π/10 and π/20. Using this new θ parameter, the

algorithm then computes the value of the objective function in Equation (1) for all existing

input combinations, which, for the example illustrated in this section, are shown as the dots in

Figure A. From among these input combinations, the one that produces the maximum

objective function value for θ=Δθ corresponds to the input combination represented by the dot

labeled O2,1 in Figure 8A, which maps to the output combination represented by the orange

dot labeled Z2,1 in Figure B. The algorithm would then supply the SQP algorithm with this

input combination to generate more input combinations that produce larger objective function

values as described previously. The four blue dots immediately surrounding the dot labeled

O2,1 in Figure C would be identified first for the example depicted in this section using this

approach. These dots map to the four new blue dots shown in Figure D surrounding the dot

labeled Z2,1. The SQP algorithm would then identify the next input combination (e.g., O2,2

shown in Figure C) that produces a larger objective function value. Note that the input

combination dot O2,2 maps to an output combination dot Z2,2 (Figure D) farther away along

the direction prescribed by the new θ value (i.e., Δθ). As the SQP algorithm continues, four

other input combinations will be identified immediately surrounding the input combination

dot O2,2 (colored red) in Figure C. The SQP algorithm would continue in this way until it

terminates. The ALPS algorithm would then take over where the SQP algorithm left off, as

described previously until the former terminates as well. Once the ALPS algorithm

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
24

-1
-6

58
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
or

lu
.li

au
.a

c.
ir

 o
n

20
25

-0
7-

10
]

 5 / 9

http://dx.doi.org/10.71885/ijorlu-2024-1-658
https://ijorlu.liau.ac.ir/article-1-658-en.html

100 A. Sedaghat and et al./ IJAOR Vol. 12, No. 2, 95-103, Spring 2024 (Serial #41)

terminates, the algorithm will have found the input combination that achieves the maximum

objective function value identified from among those previously tested for θ=Δθ.

The algorithm iterates this pattern of steps to identify the combinations of output values

that lie farthest away along their prescribed directions defined by their corresponding θ value

in a clockwise fashion until θ≥2π (i.e., all the directions have been swept). Any time before θ

is incrementally advanced, the objective function of Equation (1) is rechecked for every

combination of input values evaluated up to that point to ensure each of the previously

identified output dots that used to be the farthest away along their prescribed directions are

still the farthest away. If a new dot is ever identified to be farther away than a previous dot

along a specific direction θ (i.e. if a new dot exceeds the dashed lines in Figure B), the

iterative process is reset to that direction, and the process continues using that improved

output dot.

Once the directional maximization process is complete, the α-shape of all the

combinations of output value points is identified and plotted as the boundary. Many systems

produce a cloud of output dots that form a concave—not convex—region like the one shown

in Figure A. If the boundary of such a cloud of output dots is identified, the result would be

the red boundary shown in Figure B. This boundary would grossly overestimate the

achievable performance space of the actual system since it is convex rather than concave, like

the cloud of output dots. Thus, the algorithm adopts the gap reduction process to address this

issue to reduce the gap size along the boundary curve.

Fig. 2 Generated output dots (A); initially identified convex boundary (B); new objective function minimized to

identify other output dots within circular or elliptical regions (C); elliptical contour plot of the new objective

function with R=2 (D); boundary updated with a new hmax value (E); the process successfully identifies concave

boundaries (F)

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
24

-1
-6

58
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
or

lu
.li

au
.a

c.
ir

 o
n

20
25

-0
7-

10
]

 6 / 9

http://dx.doi.org/10.71885/ijorlu-2024-1-658
https://ijorlu.liau.ac.ir/article-1-658-en.html

Optimization of active microarchitecture design 101

This gap reduction process starts with identifying all the vectors that point from each

output dot along the existing boundary to their neighboring dots on the same boundary. The

magnitude, hmax, of the longest vector is identified because this vector points between the two

output dots (e.g., Zh1 and Zh2, shown in Figure B) that usually correspond to the opening of a

previously unknown concave boundary. The algorithm then computes a new objective

function, Jg(x1, x2), defined by

 () (

) (()

)

 (2)

 (

) (()

)

 (

) (()

) (()

)

for all the input combinations previously evaluated with R=1. This objective function is

minimized to identify output combinations that lie within circular or elliptical regions like

those shown in Figure C. The region is circular if R=1 in Equation (2). However, if R

increases, it becomes an increasingly elongated ellipse, as shown in Figure C. The angle, α, in

Equation (2) is defined by

 (

) (3)

where f1, Zh1 and f2, Zh1 are the horizontal and vertical components of Zh1, while f1, Zh2 and f2, Zh2

are those of Zh2 (Figure C). After computing the objective function of Equation (2) for all the

previously evaluated input combinations for R=1, it identifies the existing input combination

that produces the minimum objective function value. This input combination maps to the

output combination closest to the center of the circle shown in Figure C. If no output dots are

found within the circle, the input combination corresponding to either the output dot Zh1 or Zh2

will be chosen as the closest to the center of the circle and is thus supplied to the previously

described SQP and ALPS algorithms to evaluate new input combinations. For the example

shown in Figure, a new group of blue output dots (Figure C) is generated after optimization.

Since none of these output dots lies within the center of the circle, the previous R-value in the

objective function of Equation (2) is multiplied by a factor of 2, and the search region is

expanded to an ellipse shown in Figure C. Figure E displays an elliptical contour plot of Jg(x1,

x2) for this R-value (i.e. R=2). If no output dots are found within the new ellipse, the process

continues to iterate by multiplying the previous R-value by the same factor of 2 to further

increase the elliptical search region. For the example shown in Figure C, however, output dots

lie within the elliptical search region corresponding to an R-value of 2. Therefore, the input

combination that maps to the output dot that lies within this region and possesses the

minimum objective function value for R=2 is supplied to the SQP-ALPS optimization

algorithm to identify an even better output dot that achieves an even smaller objective

function value. This process will produce new output dots (e.g., the new set of orange dots

shown in Figure 9). Whether or not these new output dots achieve a smaller objective function

value, the output dot that obtains the minimum objective function value is identified and

considered part of the system's performance boundary. It is thus redefined as either Zh1 or Zh2.

In the example shown in Figure E, the Zh2 output dot is redefined. Note also that hmax is

updated as well. This boundary learning process is repeated until both (i) the horizontal

component of the boundary vector with the largest magnitude (i.e., hmax) is less than a set

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
24

-1
-6

58
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
or

lu
.li

au
.a

c.
ir

 o
n

20
25

-0
7-

10
]

 7 / 9

http://dx.doi.org/10.71885/ijorlu-2024-1-658
https://ijorlu.liau.ac.ir/article-1-658-en.html

102 A. Sedaghat and et al./ IJAOR Vol. 12, No. 2, 95-103, Spring 2024 (Serial #41)

percentage of the horizontal distance across the full cloud of output values, and (ii) the

vertical component of the same vector is also less than the same percentage of the vertical

distance across the same cloud. This percentage threshold is typically set between 5% and

10%.

Additionally, before the largest boundary vector is updated with a new magnitude (i.e.,

hmax), the entire optimization process in this section is repeated using the previous objective

function in Equation (2) for all θ values. This is to ensure that any new dots evaluated using

that objective function are allowed to improve the accuracy of the boundary if possible.

Accordingly, both convex and concave boundaries, like the concave boundary shown in

Figure F, can be identified that accurately define the achievable performance space of the

system.

3 Conclusions

To set up the optimization problem, a model needs to be established that describes the

performance of an active architecture design with a given set of design parameters. This

model can be a real experiment, of which the parameters can be arbitrarily changed and

controlled, a numerical model based on finite element analysis, a closed-form analytical

model of the parameterized topologies, or a regression model based on data generated by

finite element analysis or real experiments. Note also that although the tool is introduced in

this paper as a tool for optimizing the parameters of flexure system topologies, it could also

be applied to a host of other diverse applications.

Although few researchers have directly attempted system-performance boundary

identification, its goal is similar to the goal of multi-objective optimization, which has been

studied extensively. A multi-objective optimization problem (MOOP) deals with more than

one objective function and aims at finding a set of solutions that optimizes all the

objective functions simultaneously. Several methods have been proposed to solve the local or

global Pareto-optimal solution set. The boundary identification approach proposed in this

paper has in part been adapted from various deterministic multi-objective optimization

methods such that the complete continuous boundary (including concave portions) that

circumscribe the performance capabilities achieved by general flexure topologies can be

identified and refined with a desired accuracy.

References

1. Song, G., Long, Q., Luo, Y., Wang, Y., & Jin, Y. (2020). Deep convolutional neural network based

medical concept normalization. IEEE Transactions on Big Data, 8(5), 1195-1208.

2. Yan, Q., Wang, B., Gong, D., Luo, C., Zhao, W., Shen, J., ... & You, Z. (2021). COVID-19 chest CT image

segmentation network by multi-scale fusion and enhancement operations. IEEE transactions on big

data, 7(1), 13-24.

3. Babiker, M. A., Elawad, M. A., & Ahmed, A. H. (2019, September). Convolutional neural network for a

self-driving car in a virtual environment. In 2019 International Conference on Computer, Control,

Electrical, and Electronics Engineering (ICCCEEE) (pp. 1-6). IEEE.

4. Zhang, C., Li, R., Kim, W., Yoon, D., & Patras, P. (2020). Driver behavior recognition via interwoven deep

convolutional neural nets with multi-stream inputs. Ieee Access, 8, 191138-191151.

5. Zimmer, L., Lindauer, M., & Hutter, F. (2021). Auto-pytorch: Multi-fidelity metalearning for efficient and

robust autodl. IEEE transactions on pattern analysis and machine intelligence, 43(9), 3079-3090.

6. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., & Hu, Q. (2020). ECA-Net: Efficient channel attention for

deep convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition (pp. 11534-11542).

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
24

-1
-6

58
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
or

lu
.li

au
.a

c.
ir

 o
n

20
25

-0
7-

10
]

 8 / 9

http://dx.doi.org/10.71885/ijorlu-2024-1-658
https://ijorlu.liau.ac.ir/article-1-658-en.html

Optimization of active microarchitecture design 103

7. Kajkamhaeng, S., & Chantrapornchai, C. (2021). SE-SqueezeNet: SqueezeNet extension with squeeze-and-

excitation block. International Journal of Computational Science and Engineering, 24(2), 185-199.

8. Fishburn, P. C. (1974). Exceptional paper—Lexicographic orders, utilities and decision rules: A

survey. Management science, 20(11), 1442-1471.

9. Charnes, A., & Cooper, W. W. (1977). Goal programming and multiple objective optimizations: Part

1. European journal of operational research, 1(1), 39-54.

10. Jong, K. A. D., (2006), Evolutionary Computation: A Unified Approach, MIT Press.

11. Padhye, N., Bhardawaj, P., & Deb, K. (2013). Improving differential evolution through a unified

approach. Journal of Global Optimization, 55, 771-799.

12. Luo, Z., Chen, L., Yang, J., Zhang, Y., & Abdel-Malek, K. (2005). Compliant mechanism design using

multi-objective topology optimization scheme of continuum structures. Structural and Multidisciplinary

Optimization, 30, 142-154.

13. Bendsoe, M. P., & Sigmund, O. (2004). Topology optimization: theory, methods, and applications.

Springer Science & Business Media.

14. Sigmund, O. (1997). On the design of compliant mechanisms using topology optimization. Journal of

Structural Mechanics, 25(4), 493-524.

15. Cao, L., Dolovich, A. T., Schwab, A. L., Herder, J. L., & Zhang, W. (2015). Toward a unified design

approach for both compliant mechanisms and rigid-body mechanisms: Module optimization. Journal of

Mechanical Design, 137(12), 122301.

16. Fletcher, R. (2000). Practical methods of optimization. John Wiley & Sons.

17. Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional networks for biomedical image

segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and

Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol

9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28

18. Lewis, R. M., Torczon, V. J., & Kolda, T. G. (2006). A generating set direct search augmented Lagrangian

algorithm for optimization with a combination of general and linear constraints (No. SAND2006-5315).

Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States).

19. Conn, A. R., Gould, N. I., & Toint, P. (1991). A globally convergent augmented Lagrangian algorithm for

optimization with general constraints and simple bounds. SIAM Journal on Numerical Analysis, 28(2),

545-572.

20. Conn, A., Gould, N., & Toint, P. (1997). A globally convergent Lagrangian barrier algorithm for

optimization with general inequality constraints and simple bounds. Mathematics of computation, 66(217),

261-288.

21. Fang, S.-C. and Puthenpura, S. (1994), Numerical linear algebra and optimization–volume 1, by Philip E.

Gill. Walter Murray, and Margaret H. Wright, Addison-Wesley, Redwood City, CA, 1991, 448 pp. Price:

$46.25. Networks, 24: 128-129. Fang, S.-C. and Puthenpura, S. (1994), Numerical linear algebra and

optimization–volume 1, by Philip E. Gill. Walter Murray, and Margaret H. Wright, Addison-Wesley,

Redwood City, CA, 1991, 448 pp. Price: $46.25. Networks, 24: 128-129.

22. Débarre, D., Botcherby, E. J., Watanabe, T., Srinivas, S., Booth, M. J., & Wilson, T. (2009). Image-based

adaptive optics for two-photon microscopy. Optics letters, 34(16), 2495-2497.

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
24

-1
-6

58
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
or

lu
.li

au
.a

c.
ir

 o
n

20
25

-0
7-

10
]

Powered by TCPDF (www.tcpdf.org)

 9 / 9

http://dx.doi.org/10.71885/ijorlu-2024-1-658
https://ijorlu.liau.ac.ir/article-1-658-en.html
http://www.tcpdf.org

