home submit paper guide for authors contact us register search archive current issue journal info
   [صفحه اصلی ]   [Archive]  
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 11، شماره 1 - ( 10-1401 ) ::
جلد 11 شماره 1 صفحات 55-47 برگشت به فهرست نسخه ها
Wavelet transform and ANFIS network-based prediction technique for forecasting confirmed cases of Covid-19 in Iran
چکیده:   (1555 مشاهده)
Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first case was identified in Wuhan, China, in December 2019. The number of confirmed cases is increasing daily and reached 101 million on 28 January 2021. This paper attempts to propose a new hybrid intelligent method for the prediction of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded. To forecast future cases, wavelet full decomposition of time series analysis served as input data for Adaptive Network-based Fuzzy Inference System (ANFIS). In addition, to tune the ANFIS membership functions, Quantum-behaved Particle Swarm Optimization (QPSO) was used. During the data preprocessing phase, all kinds of Wavelet Transform functions were tested for the best result.  The proposed method was found to be very efficient in forecasting confirmed cases of COVID-19 in the upcoming ten days.
The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using QPSO and Wavelet Decomposition. The WT-QPSO-ANFIS model is evaluated using the World Health Organization (WHO) official data on the outbreak of COVID-19 to forecast the confirmed cases in the upcoming ten days. More so, the WT-QPSO-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination (R2), and computing time.
 
متن کامل [PDF 562 kb]   (1200 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى
دریافت: 1400/5/12 | پذیرش: 1400/11/16 | انتشار: 1401/10/30
ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Faridi Masouleh M, Akbari A, Bagheri A, Nezamivand Cheghin S. Wavelet transform and ANFIS network-based prediction technique for forecasting confirmed cases of Covid-19 in Iran. International Journal of Applied Operational Research 2023; 11 (1) :47-55
URL: http://ijorlu.liau.ac.ir/article-1-632-fa.html

Wavelet transform and ANFIS network-based prediction technique for forecasting confirmed cases of Covid-19 in Iran. ژورنال بین المللی پژوهش عملیاتی. 1401; 11 (1) :47-55

URL: http://ijorlu.liau.ac.ir/article-1-632-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 11، شماره 1 - ( 10-1401 ) برگشت به فهرست نسخه ها
ژورنال بین المللی پژوهش عملیاتی International Journal of Applied Operational Research - An Open Access Journal
Persian site map - English site map - Created in 0.05 seconds with 35 queries by YEKTAWEB 4710